NSWC/WOL/TR 76-20

SWC/WOL/TR 76-20

METHODS FOR SOLVING THE VISCOELASTICITY EQUATIONS FOR CYLINDER SPHERE PROBLEMS

BY

G.C. Gaunaurd

22 MARCH 1976

NAVAL SURFACE WEAPONS CENTER WHITE OAK LABORATORY SILVER SPRING, MARYLAND 20910

Approved for public release; distribution unlimited.

NAVAL SURFACE WEAPONS CENTER WHITE OAK, SILVER SPRING, MARYLAND 20910

r D D Com

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NSWC/WOL/TR-76-20 Methods For Solving The Viscoelasticity Equations For Cylinder and Sphere Problems. 6. PERFORMING ORG. REPORT NUMBER B. CONTRACT OR GRANT NUMBER(a) AUTHOR(#) G. C. Gaunaurd 9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center White Oak, Silver Spring, Maryland 20910 MAT-05L-000/ZR00-001-01A 11 CONTROLLING OFFICE NAME AND ADDRESS 18. SECURITY CLASS. (of the 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Unclassified 154. DECLASSIFICATION DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT fol the enetract entered in Block 26, if different from Report) IS. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) Viscoelasticity Equations Sound-Absorption Cylinder-Sphere Acoustic Scattering Viscoelastic Models Kelvin-Maxwell ABSTRACT (Continue on reverse side if necessary and identify by block number) This report considers techniques used to solve the Navier field equations of viccoelasticity in the Kelvin-Voigt or Maxvell models, for cylindrical or spher-

This report considers techniques used to solve the Navier field equations of viccoelasticity in the Kelvin-Voigt or Maxwell models, for cylindrical or spherical geometries. Introducing scalar and vector potentials into the viscoelasticity equations formulation, ultimately yields "telegraph-type" partial differential equations governing those potentials. For harmonic time-dependence these reduce to scalar and vector Helmholtz's equations with complex propagation constants. These constants are shown to be related to the viscoelastic material

DD 1 JAN 73 1473 EDITION OF 1 NOV 85 IS OBSOLETE

350

UNCLASSIFIED

SECURITY CLASSIFICATION UP THIS PAGE (When Date Beter

391596

UNCLASSIFIED

LUHITY CLASSIFICATION OF THIS PAGE/When Data Entered)

constants in a more or less complicated fashion depending on the viscoelastic model used. The stresses, strains and displacements are then found from these potentials for a dozen cases of interest in those two coordinate systems. The formulation resembles that of electrodynamics in a Coulomb gauge.

The above information is vital to set-up and solve various kinds of boundary-value-problems of dynamic viscoelasticity which appear when studying cases of acoustic scattering from sound-absorbing structures, problems we are now addressing. The analysis is summarized in two large Tables, set-up in a conveniently accessible form. Remarks on "complex-moduli" and examined in a rinal section under the light of the viscoelasticity "Correspondence Theorem" and a list of recommendations and conclusions is given at the end.

UNCLASSIFIED

NSWC/WOL/TR-76-20

NSWC/WOL/TR-76-20

22 March 1976

METHODS FOR SOLVING THE VISCOELASTICITY EQUATIONS FOR CYLINDER AND SPHERE PROBLEMS

This report describes techniques used to solve the field equations of dynamic viscoelasticity in two geometries, two viscoelastic models, and a dozen different situations of interest. This information is needed to study acoustic scattering from sound-absorbing structures of cylindrical and spherical shapes, which are cases presently under study by the author. This report sets up most of the theoretical viscoelasticity foundations needed to deal with the other sound scattering problems under study.

This work is continuing and it was done as part of an NSWC project entitled "Acoustical Properties of Ordnance Materials", Task No. MAT-03L-000/ZR00-001-010, Problem 127, which deals with acoustic scattering from objects covered with viscoelastic materials. This is a progress report describing work done during FY 76.

J. R. DIXON
By direction

I A

NSWC/WOL/TR-76-20

CONTENTS

		Page
I.	INTRODUCTION The basic viscoelastic models.	3
II.	SOLUTION OF THE FIELD EQUATIONS	7
	 Definition of Plane Strain Constitutive Relations Strain-Displacement Relations Displacement-Independent Potential Relations Stress-Displacement Relations Strain-Independent Potential Relations Field Equations Stress-Independent Potential Relations Helmholtz's Equations For The Scalar and Vector Potentials Helmholtz's Equations For The Independent Scalar Potentials Solenoidal Solution of The Vector Helmholtz Equation Remarks 	13 13 14 14 14 14 15 15 16 16
III.	VISCOELASTIC MODELS AND COMPLEX MODULI	18
	1. The Correspondence Theorem 2. Conclusions	21 22
IV.	BIBLIOGRAPHY	25
	TABLES .	
1. 2.	Spherical Coordinates For General Arbitrary Time-Dependence in Various Cases of Interest.	9
	Spherical Coordinates For Harmonic Time-Dependence in Various (ie, six) Cases of Interest.	11

I. INTRODUCTION The basic viscoelastic models.

The deformation of a viscoelastic solid under any kind of external loads is usually studied by means of viscoelastic models. Two basic models commonly used are associated with the names of Kelvin'-Voigt and Maxwell . In the Kelvin-Voigt model, the elastic and viscous properties of each material point (or particle) of the body, which can be respectively represented by a spring and a dashpot, are assumed connected in parallel. In the Maxwell model they are assumed connected in series. We rejeat that this description applies at each point in the viscoelastic solid and it is as if the body contained a continuous distribution of damped oscillators, (viz, elementary mass-spring-dashpot systems) one at each one of its material points. As if it were not clear enough already, the entire "Kelvin-Voigt solid" can not be replaced by ONE spring connected in parallel with ONE dashpot. This simplistic view of a deformable solid as a single particle, may be useful in some other elementary context such as that used when one treats a body as a particle, but it is of no use in viscoelasticity. Otherwise viscoelasticity could not be viewed as a field-theory capable of describing stress and displacement fields at each point in a body, since by that oversimplification, the body has been reduced to a particle. We emphasize this rather trivial, but quickly forgotten point, because it is common to find authors who try to use, say, the "Kelvin model" as a single spring in parallel with a single dashpot, only to find that the model is "no-good" and that they must go to "moredegrees-of-freedom systems", such as three "Kelvin-models" in series, or other similar configurations, to obtain meaningful results. It is clear that this approach does not give the Kelvin model, as it truly is, even a chance to "work". These authors have replaced the continuous field-equations of viscoelasticity, by a set of three ordinary second-order differential equations of the simple

William Thomson (Lord <u>Kelvin</u>), b. at Belfa__, 482; d. near Glasgow, 1907. Professor at Glasgow Univ, 1846-1889. Buried at Westminster Abbey, London (near Newton's tomb).

Woldemur Voigt, b. at Leipzig 1850; d. at Göttingen 1919. Professor of Mechanics at Göttingen Univ, Germany.

James C. Maxvell, b. Edinburgh, 1831; d. Cambridge, 1879. Professor of Fhysics at King's College and at Cambridge Univ, 1860-1879. Founder of the Cavendish Lab at Cambridge.

ie, a set of three scalar partial differential equations hopelessly coupled and non-linear, governing the displacement-field in the body, which can be linearized for small deformations and small deformation-gradients, and the "linear" theory of viscoelasticity then results. These equations are called the Navier equations of viscoelasticity.

damped-oscillator type. This replacement is, in no way, equivalent to solving the field-equations of Navier.

The basic point of the continuum field-theory approach to viscoelasticity is that the model assumptions, that the spring and dashpot are connected in series or in parallel at each point in the body, are immediately reflected in the fact that the field-equations resulting from either one of those models turn out to be different. To fix the ideas we now give the linearized form of the field-equations for both these models.

i) Kelvin-Voigt Model (parallel):

$$\left[1 + \frac{\mu_{\mathbf{v}}}{\mu_{\mathbf{e}}} \frac{\partial}{\partial t}\right] \nabla^2 \frac{1}{\mathbf{u}} + \left(\frac{\lambda_{\mathbf{e}} + \mu_{\mathbf{e}}}{\mu_{\mathbf{e}}}\right) \left[1 + \frac{\lambda_{\mathbf{v}} + \mu_{\mathbf{v}}}{\lambda_{\mathbf{e}} + \mu_{\mathbf{e}}} \frac{\partial}{\partial t}\right] \vec{\nabla} (\vec{\nabla} \cdot \vec{\mathbf{u}}) = \frac{1}{C_{\mathbf{g}}^2} \frac{\partial^2 \vec{\mathbf{u}}}{\partial t^2}$$

ii) Maxwell Model (series):

$$\begin{bmatrix} 1 + \frac{1}{2\beta} \frac{\partial}{\partial t} \end{bmatrix} \begin{bmatrix} \nabla^2 \overset{\leftarrow}{u} + \begin{pmatrix} \frac{\lambda_e + \mu_e}{\mu_e} \end{pmatrix} & \overrightarrow{\nabla}(\overrightarrow{\nabla} \cdot \overset{\leftarrow}{u}) - \frac{1}{c_s^2} \frac{\partial^2 \overset{\leftarrow}{u}}{\partial t^2} \end{bmatrix} + \frac{3\alpha}{2\beta} \begin{bmatrix} \nabla^2 \overset{\leftarrow}{u} + \frac{1}{3} \overrightarrow{\nabla} (\overrightarrow{\nabla} \cdot \overset{\leftarrow}{u}) - \frac{1}{c_s^2} \frac{\partial^2 \overset{\leftarrow}{u}}{\partial t^2} \end{bmatrix} - \frac{1}{c_s^2} \frac{\partial^2 \overset{\leftarrow}{u}}{\partial t^2} + \frac{3\alpha + 2\beta}{c_s^2} \frac{\partial \overset{\leftarrow}{u}}{\partial t} (c_s^2 - \frac{\mu_e}{\rho})$$

Here ρ is the material density, λ , μ are the elastic Lamé constants, μ is the vector-displacement field, and λ , μ (or α , β in the Maxwell model) are the viscosity coefficients. As given above, in differential operator form, these equations hold in any coordinate system. These are the Navier equations one must solve in the viscoelastic body. It is possible to derive eqs. (i) and (ii) starting from the basic idea that the spring and dashpot at each material point are connected either in parallel or in series respectively. Once the displacement field components are found by solving (i) or (ii) with suitable boundary conditions, one can then find the stresses from them.

In the absence of viscosity (ie, λ = 0, μ = 0 for the Kelvin model or α = 0, β = 0 for the Maxwell model) both field equations (i) and (ii) given above reduce to,

iii) The Field equations of linear dynamic elasticity:

$$\nabla^{2} \dot{u} + \left(\frac{\lambda_{e} + \mu_{e}}{\mu_{e}}\right) \vec{\nabla} (\vec{\nabla} \cdot \vec{\mu}) = \frac{1}{c_{e}^{2}} \frac{\partial^{2} \dot{u}}{\partial c_{e}^{2}}.$$

NSWC/WOL/TR-76-20

since now there are only springs and no dashpots at each material point. The scalar components of this vector equation are the Navier equations of elasticity in the absence of body-forces as found by Navier⁵ for the elastic body. Equations (i) and (ii) are also called the Navier equations (of viscoelasticity) by extension, since Navier never worked with viscoelastic solids.

In most materials of interest, the "constants" λ_e , μ_e and the "coefficients" λ_v , μ_v are really not constants, but frequency-dependent parameters. Thus, few materials are completely describable by the Kelvin or the Maxwell models in the continuum sense of eqs. (i) and (ii). The material behavior of viscoelastic substances tends to follow one or the other model in different regions of the parameters involved, say, frequency among others. This means that in general, these models of field-equations (i) and (ii) are quite "good". Rubbers at low frequencies are known to be well described by the Kelvin model (i). Pulse-tube measurements exploit this factual observation. Since these models are not perfect, researchers in this field have proposed more complicated models.

It is not hard to see that various Maxwell elements in series at each point in the body have the properties of a single Maxwell element with equivalent spring

and dashpot constants given by
$$1/k_{eq} = \sum_{i=1}^{n} 1/k_i$$
 and $1/n_{eq} = \sum_{i=1}^{n} 1/n_i$

respectively. Various Kelvin elements in parallel at each point in the body have

the properties of a single Kelvin element with
$$k_{eq} = \sum_{i=1}^{n} k_i$$
 and $n_{eq} = \sum_{i=1}^{n} n_i$.

On the other hand, Kelvin elements in series, or Maxwell elements in parallel, have more complicated properties. In their desire to generalize the basic models (i) and (ii), researchers have invented the so called "standard viscoelastic model". It consists of a Maxwell element in parallel with a Kelvin element at each point in the body. The linearized field equations which result in this model when two springs and two dashpots are connected as described above must be very complicated and rare, since I can not find one single reference to them. I was able to derive the particular subcase which results when the two dashpots are described by one single viscous constant η and both springs by the same two elastic constants λ_e and μ_e . The resulting field equations in this still very

⁵ C. L. Navier, (1827) Mémoire sur les lois de l'equilibre et du mouvement des corps solides élastiques. Mém. Acad. Sci. Paris 7.

general case are,

$$iv) \quad \mu_{e} \left[1 - \delta_{t_{1}t_{2}} \right] \nabla^{2} \dot{u} + \left[\lambda_{e} + \mu_{e} - \frac{\mu_{e}}{3} \delta_{t_{1}t_{2}} \right] \dot{\nabla} (\dot{\nabla} \cdot \dot{u}) +$$

$$+ t_{1} \frac{\partial}{\partial t} \left\{ (\lambda_{e} + \frac{2}{3} \mu_{e}) \dot{\nabla} (\dot{\nabla} \cdot \dot{u}) - \rho_{u}^{+} \right\} + \mu_{e} t_{2} \frac{\partial}{\partial t} \left\{ \nabla^{2} \dot{u} + \frac{1}{3} \dot{\nabla} (\dot{\nabla} \cdot \dot{u}) \right\} =$$

$$= \rho \dot{u}$$

where $\delta_{t_1t_2}$ is the Kronecker delta equal to one (zero) for $t_1=t_2$ (or $t_1\neq t_2$). Further t_1 (or t_2) equal n/μ_e . For $t_1=0$ and $t_2=n/\mu_e$ (here $\eta=\mu_v$), eqs. (iv) reduce to the Kelvin model equations (i). When $t_1=t_2=n/\mu_e$ (which amounts to setting $2\beta=1/\eta$ and $-3\alpha=1/\eta$), equations (iv) reduce to the Maxwell model equations (ii) with $3\alpha+2\beta=0$. The quantities t_1 and t_2 are the retardation or relaxation times of the Kelvin and Maxwell models respectively. The constitutive (ie, stress-strain) relations of this viscoelastic model are also given in ref (6). I know of no viscoelastic boundary-value-problem that has ever been analytically solved using this model, which many agree is more realistic than (i) or (ii), since it can describe wider material behaviors and a wider variety of materials. Since the "standard viscoelastic model" is so hard to handle, we must realistically conclude that all analytical viscoelastic problems we are bound to see solved in the near future will be based on either the Kelvin or the Maxwell models of field equations (i) or (ii) respectively.

Occasionally we find a reference in the literature which contains a very complicated network such as a dozen "Maxwell elements" in parallel. Such a complicated network immediately implies that this is not a continuum field-theory approach, but rather that the body has been replaced by twelve coupled damped-oscillators. Work of this nature happens to be mostly experimental, chemical, and containing little mathematical analysis. These complicated networks are basically intended as pictorial descriptions without much physico-mathematical discussion of the response of the twelve coupled-oscillators, which, per se, is far from being a trivial problem. Sometimes one comes across an entire textbook dealing with various aspects of viscoelasticity without a single reference to the continuum approach, or the field-equations for the viscoelastic models. This old fashioned tendency is out-dated today. Mechanics of deformable media has become more highly mathematized now-a-days, than ever before.

II. SOLUTION OF THE FIELD EQUATIONS. (Tables 1 & 2)

We will now present a way to solve the field-equations of linear dynamic viscoelasticity (i) and (ii). The technique we will follow is common in other field-theories (ie, electro-dynamics) but we believe it is novel in viscoelasticity. It consists of introducing scalar and vector potentials φ and ψ such that $u=\nabla\varphi+\nabla\times\psi$ and $\nabla\cdot\psi=0$. By splitting the displacement field u into irrotational and solenoidal parts in this fashion, it turns out that the field equations of each model (i) or (ii) are automatically satisfied provided that the scalar and vector potentials satisfy certain scalar and vector telegraph-type equations. The vector potential has three scalar components, but since the solenoidal gauge condition $\nabla\cdot\psi=0$ must be satisfied, only two of the three scalar functions are independent. Those two (ψ and χ where ψ is not $|\psi|$) together with the scalar potential φ , form the three independent scalar potentials that can be used to solve the problem. If these three independent scalar potentials satisfy three scalar telegraph-type equations then it can be shown that the field equations are automatically satisfied.

It is then possible to express all the stress and displacement components in terms of these independent potentials, which are determined first by solving the telegraph-type equations they must satisfy. In this fashion we can determine all the stresses and displacements in the body needed to completely solve the problem.

To discuss these sclutions for the Kelvin-Voigt or Maxwell solids we have constructed two charts. (Tables 1 and 2). Table 1 deals with these viscoelastic models for the general case of arbitrary time-dependence. Table 2 covers the important case of harmonic time-dependence of the form exp (-iwt). The coordinate systems covered in those tables are the cylindrical and the spherical. The cylindrical system is studied in general in columns B and C for the Kelvin or Maxwell models respectively. It is also studied in the (z-independent) planestrain subcase, which is applicable to infinitely long cylinders, in columns D and E, for the Kelvin and Maxwell models, respectively. The spherical system is also presented in full generality in column F for the Kelvin model. It is also given in column G for the exi-symmetric case without azimuthal dependence \$, again for the Kelvin model. The Maxwell model is not covered for spherical coordinates in these tables. The basic result of these tables, particularly Table 2, for harmonic time-dependence, is that if we introduce independent scalar potentials which satisfy the Holzholtz's equations with complex propagation constants given in item (10), then the field equations given in items (7) are automatically satisfied for each of the cases considered. Furthermore, the displacement and stressfield components are found from the potentials by the relations in items (4) and (8) respectively. Notice that the complex propagation constants given in item (10) are related to the elastic and viscous constants of the viscoelastic material

TABLE 1 : FOUNTIONS OF CINEAR DYNAMIC VISCO	ELAUTICITY IN CYCINDRICAL AND EPHERCAL COORD
A) GENERAL FURMULAS VA. ID FOR ANY VISCUELASTIC MODEL	3) KELVIN VOOT VORDELA THE MONEL (PARALLEL) FOR
IN ANY COURD NATE SYSTEM	GENERAL S PIMENSIONAL CYLINDRICAL COURDINATES
O RELATION BETWEEN THE TRACES CAL AND E.	1) RELATION BETWEEN THE TRACES, CAN AND CAN :
$\epsilon_{AA} = \left(\frac{3P+2Q}{3R+2S}\right) \epsilon_{AA}$	Cea = [(3λ+2μa)+(3λ,+2μy) ≥] € an
CA - HYDROSTATIC OR BULK STRESS , €44 - DILATATION.	λε, με - ELASTIC (LAMÉ) CONSTANTS , λε,με - VISCOUS CONSTA
2) <u>CONSTITUTIVE RELATIONS</u> : Religible + 25 ty = P dy E44 + 2 Q Ey OR, WHICH IS THE SAME	2) CONSTITUTIVE RELATIONS: HERE, R=0, 5-\frac{1}{2}. P= 4.4 \lambda \frac{3}{2}. Q=\frac{1}{4}. \frac{3}{2}.
$\mathcal{E}_{ij} = \frac{2(PS - RQ)}{2S(3R \cdot 2S)} \delta_{ij} \epsilon_{AL} + \frac{2Q}{2S} \epsilon_{ij} , \text{ where, } \epsilon_{AL} = \nabla \cdot \vec{u} \delta_{ij}$	by = [le + lu de] oig +AA + = (He + Mu de) +ij
R=α+ \(\int_{\text{qu}} \frac{\partial}{\partial} \fractorunded{\partial} \frac{\partial}{\partial} \frac{\partial}{\par	CIEARLY NEO NEO NEELS A HEL
S) STRAIN - DISPLACEMENT RELATIONS:	3) STRAIN - DISPLACEMENT RELATIONS:
$\epsilon_{ij} = u_{(i,j)} - \frac{1}{2} \left[u_{i,j} + u_{j,i} \right]$	$ \epsilon_{nn} = \frac{\partial u_n}{\partial x} $, $ \epsilon_{nn} = \frac{1}{2} \frac{\partial u_n}{\partial x} $, $ \epsilon_{nn} = \frac{\partial u_n}{\partial$
DISPLACEMENT - INDEPENDENT POTENTIAL RELATIONS:	4) DISPLACEMENT - INDEPENDENT POTENTIAL RELATIONS
NA CENERAL EVERESCION CAN BE CIVEN VALID IN ANY COURT SYSTEM	$ \vec{\mathcal{U}} = \vec{V}(\psi + \frac{\partial \psi}{\partial x}) - \hat{\epsilon}_{\alpha} \nabla^{2} \psi + \hat{\epsilon}_{\alpha} \cdot \vec{\nabla}_{\alpha} \nabla^{2} z) = \vec{\nabla} \phi + \vec{\nabla} x [(\vec{\nabla} \psi)] $ or in component form:
HO GENERAL EXPRESSION CAN BE GIVEN VALID IN ANY (CORD. SYSTEM	$\int_{\mathbb{R}^{n}} \frac{d^{n}}{dt} \left[\frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) \right] dt = \frac{1}{2} \frac{\partial u}{\partial t} \left[\frac{\partial u}{\partial t} \left(\frac{\partial u}{\partial t} \right) \right] dt$
	MERE: φ • φ(ṛ θ, m, t) , ψ μ ψ(ṛ, g, m, t) , λ = ス(ṛ, θ, m, t) , ' MOTE: 대 = 현φ + 연호회 : 당리회 = ο .
STRESS - DISPLACEMENT RELATIONS:	5) STRESS - DISPLACEMENT SELATIONS .
	Eig - [1. 1. 2] dy 0 - 2 (14 - 14 2) = 1 24 - 24 2 24 .
S STRAIN - MORPEMORNT HOSENTIAL RELATIONS	b) TRAIN INDEPENDENT POTENTIAL BELATIONS:
no general expression can be given valid in any coord. System.	$5e^{-a} \cdot 5 \frac{2^{2a}}{3^{2a}} \left[\frac{1}{2} \left(0 \cdot \frac{1}{24} \right) \right] \cdot \left[\frac{1}{2^{2a}} \cdot \frac{1}{2^{2a}} \cdot \frac{1}{2^{2a}} \cdot \left(0 \cdot x \right) - \frac{1}{2} \frac{1}{2^{2a}} \cdot \left(0 \cdot $
) the field equations : (for the displacement field)	7) FIELD EQUATIONS:
อ : [QR • 25(P• Q] ♥(♥• นี) • Q(3 R • 26) ♥³ นี • 25(3R - 25)ှค นี	i): [\u\u\u\u\u\u\u\u\u\u
: ♦);	[m·h·][0=110- m·+ 12]·[1-10·(1-10)] = 1 = 1 = 1
2 [2QR - \$ (P+2Q)]ઇ(ઇન્દ્ર) - Q(3R+25)ઇન(ઇન્દ્ર) - 29(3R+25) કહે	WHERE A AND UP ARE GIVEN ABOVE IN 4) AND U).
NOTE: V' L = Ø(Ø. L) - V. (Ø. L)	ii): [2 + 2/4 + (2 + 2/4) 是]中(四面)-(44+14是)西(四面)-p
Q, R, S, P ARE OPERATORS DEPENDING ON THE MODEL.	THESE TWO FORMS () AND W) ARE EQUIVALENT. TO EVEN IN
STRESS - INDEPENDENT POTENTIAL RELATIONS:	6) STARBY - MORPENDENT PATENT AL SELATIONS:
	= - [2-2是]でか・2(ル·ルシリテルの語)-計(小島(でな))]
	tu=[2-2表]のゆ・2(4・14是)[治路・+記(4・強)・岩(4路(02
	C40 = [1, 0 2, 2] 0 20 + 2 (140 + 14) 2 342 (4 + 342) - 34 (4 2 x)]
NO GENERAL EMPRESSION CAN BE GIVEN WALLD IN ANY COORD. SYSTEM.	= [- [- - - - - - - -
	Ene [he ho 3] [2 33 (4 - 30) - 3 (00) - + 33 (00)]
	THE ARE EQU. (5) WITH A = 500 AND A A COURT OF A
) TELEGRAPH TYPE EGS. FOR ECALAR & VECTOR POIENTIALS	THESE ARE EQS. (5) WITH A - V P AND 4, AS GIVEN INEC. 9) TELEGRAPH TYPE EQS FOR THE SCALAR EXECTOR STREETING.
2) [+08 +25(P+20)]V° = 25(3R+25) 0 22	1 frame 1 vac - 1 20 , Madrette , ca - destin

ATERF. T.

S. FOR THE PLANE STRAIN SUBLAGE.

E) MAXIVELL VISCUELASTIC MODEL (SERIES) IN CYLINDRICAL

COORDINATUS FOR THE PLANE- STRAIN SUBCASE.

WHICH IS APPROPRIATE FOR MFINITELY LONG BODIES (&, CYLINDERS), OCCURS WHEN $u_{\pm}=0$ and $\frac{2}{31}$ (ANY VARIABLE) = 0.

WE IS NO z-DEPENDENCE AND $u_{\tau}=u_{\tau}(r,\theta,t)$, $u_{\theta}=u_{\theta}(r,\theta,t)$. IN TERMS OF φ_1 ψ_r , ψ_{θ} , ψ_{θ} , φ_{θ} , PLANE-STRAIN AMOUNTS TO ψ_{θ} , ψ_{ϕ

2 = [(32.

1) RELATION BETWEEN THE TRAC

THE BULK OR HYDROSTATIC ST 2) CONSTITUTIVE RELATIONS:

(r, 0, t), $\psi = 0$ & $\chi = \chi(r, 0, t)$. NOTE THAT BY EQS. B. 11-B, $\psi_e = -\nabla_e^2 \chi$. SO IN PLANE-STRAIN ONLY ϕ & χ APPEAR TION IS INDEPENDENT OF ψ . ANY OF THESE EQUIVALENT DEFINITIONS YIELDS. $\epsilon_{ex} = 0$, $\epsilon_{ex} = 0$, $\epsilon_{ex} = 0$. 2) CONSTITUT VE RELATIONS: TE RELATIONS:

\$] ∆ + 2 (Me+Hu &) € • • HERE Q = E + E = Str + tr + 1 300 | Sxx = M { 1 6 7 } + N1 3. <u>3.</u>] △

Gre Mil Le A + 2 He Err & + No 200 = M, t le A + 2, Me E + O + No

(HERE M, AND N, ARE THE SAME OPERATORS GIVEN IN (-8) OR E-8) LENS MY 240 Ere BELOW (10, En+ Egg) IN (5).

(EVERY STRAIN -

COMPONENT

WITH SUBINDEX

(2_{rr} = (λe + λυ δt) Δ + 2 (μe + μυ δt で = (2+ 2 g 是) ム+2(/4+ /4 g (200 = 2 (Me + Mr 3) Erb 3) STRAIN - DISPLACEMENT RELAT

 $\epsilon_{rr} = \frac{\partial u}{\partial r}$, $\epsilon_{\theta\theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{u}{r}$, $\epsilon_{\theta\theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{u}{r}$

4) DISPLACEMENT-INDEPENDENT [$\vec{\alpha} = \nabla [\phi + \psi + \vec{\tau} \cdot \vec{\nabla} \psi] - \vec{\tau} \nabla^2$

[U+ = = = [φ+ = (r ψ)] - r ∇2 ψ =

 $u_{\bullet} = \frac{1}{r} \frac{\partial}{\partial r} \left[\varphi + \frac{\partial}{\partial r} (r \psi) \right] - \frac{1}{\sin \theta} \frac{\partial}{\partial r}$

(up = rsino 30 (φ+ 2 (rw)) + 30

SPLACEMENT RELATIONS

2 2 €ne

 $\epsilon_{\theta\theta} = \frac{u_r}{r} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial A}$, $2\epsilon_{r\theta} = \frac{1}{r} \frac{\partial u_r}{\partial A} + \frac{\partial u_{\theta}}{\partial A} = \frac{u_{\theta}}{r}$, $\epsilon_{ze} = 0$, FINT-INDEPENDENT POTENTIAL RELATIONS: $\frac{\partial}{\partial x} \left[\nabla_{i\phi} \left(\nabla_{i\phi}^{\lambda} \chi \right) \right] = \nabla \varphi - \nabla_{x} \left[\frac{\partial}{\partial x} \nabla_{i\phi}^{\alpha} \chi \right] = \nabla \varphi + \nabla_{x} \left[\nabla_{x} \left(\frac{\partial}{\partial x} \chi \right) \right]$

OR IN COMPONENT-FORM,

 $u_{\theta^{**}} \stackrel{!}{\vdash} \frac{\partial \varphi}{\partial \theta} + \frac{\partial}{\partial r} (\nabla^2 \chi) , \quad u_{\bullet^{**}} \stackrel{!}{\vdash} \frac{\partial \varphi}{\partial \theta}$ IN TERMS OF G AND %. n= 1 30 -30 , 1=0

₹ = ê, 8 + ê + 30

(W= - 02 Z) INTERMS OF G AND Wa.

26 = 0 , 2 E = 0

 $\nabla^2 = \frac{3}{3^2} + \frac{1}{12} \frac{3}{3} + \frac{1}{12} \frac{3}{36} \cdot \frac{1}{12}$

5) STRESS - D SPLACEMENT RELATIONS : (HERE M, & N, ARE THE SAME OPERATORS GIVEN IN C-8) of E-0 C,, - M, (10 + 2 He [3"]) + N

 $2\epsilon_{r\theta} = 2\frac{\partial^2}{\partial r\partial \theta} \left(\frac{\varphi}{r}\right) + \left(\frac{\partial^2}{\partial r^4} - \frac{1}{r}\frac{\partial}{\partial r} - \frac{1}{r^2}\frac{\partial^2}{\partial \theta^3}\right) \nabla^2 \chi$

ISPLACEMENT RELATIONS

(r, e, t) , x = x (r, e, t).

[] A + 2 (/4 + /4) 3 (4 + + 3 4) , Can = [2 + 2 + 3 4] A (+3++3+ -4) , \(\alpha = \frac{3r}{2r} + \frac{4r}{r} + \frac{1}{20} \).

 $\begin{array}{lll} C_{\theta\theta} = M_1 \left\{ \lambda_e \Delta + 2 \mu_e \left[\frac{1}{4} + \frac{1}{7} \frac{\partial u_\theta}{\partial \theta} \right] \right\} + N_1 & \text{SAME } C \\ C_{zz} = M_1 \left\{ \lambda_e \Delta \right\} + N_1 & \text{GIVEN} \\ C_{r\theta} = M_1 \mu_e \left[\frac{1}{7} \frac{\partial u_\theta}{\partial \theta} + \frac{\partial u_\theta}{\partial r} - \frac{u_\theta}{r} \right] & \Delta = \frac{\partial u_\theta}{\partial r} + \frac{u_\theta}{r} + \frac{1}{7} \frac{\partial u_\theta}{\partial \theta} \\ \end{array}$ (THESE ARE EQS (4) SUBSTITUTED INTO EQS. (3).)

EPENDENT POTENTIAL RELATIONS :

 $\epsilon_{00} = \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \phi^2} + \frac{1}{8} \frac{\partial \phi}{\partial r} + \frac{\partial}{\partial r} \left[\frac{1}{r} \frac{\partial}{\partial \phi} \left(\nabla^2 \chi \right) \right]$ $\frac{1}{2} - \frac{1}{7} \frac{\partial}{\partial \Theta} (\nabla^2 z)$ STRAINS (ϵ_{zz} , ϵ_{zz} , ϵ_{zz}) vanish . To have these relations in terms of ϕ and ψ_z , we replace $\nabla^2 x$ by $-\psi_z$. The result is,

TIONS ARE FOUND BY SUBSTITUTING EQS. 4) INTO EQS. 3).

5) STRESS - DISPLACEMENT RELAT ε; = (λe+λ, 3) S; Δ + 2(μe+μ+

WHERE THE EN ARE GIVEN ABOVE 6) STRAIN-INDEPENDENT POTENT $\epsilon_{rr} = \frac{\partial^2}{\partial r} \left[\varphi + \frac{\partial}{\partial r} (r \psi) \right] + \frac{\partial}{\partial r} \left[r \nabla^2 \psi \right] = \frac{\partial}{\partial r}$

 $\epsilon_{\bullet \bullet} = \left[\frac{1}{12}\frac{3}{3}\frac{1}{6} + \frac{1}{12}\frac{3}{3}\frac{3}{3}\right]\left[\phi + \frac{3}{3}\mu(r\dot{\omega})\right] - \nabla^2 t$ €++ + 30 + cote 30 + 1 30 + 2 30 + 1 30 30 4

2600" ASING 2004 - 2004 B 200 + 22 10 384

26-4" Fano 8-36 - Frano 36 - Frano 36 86 24, a - 2-335 - 23 38 - 12 337 - 22 17 18 7) FIELD EQUATIONS .

TIONS!

(20 - 4x - 1/2 346]+[24+/40+(2+/4) =] 34 - 9 324 [v2u - 42 + 2 34]+ [2+4+(2+4) 3=] + 36 = 9 300

- 3u + ur + 1 3u , V2 = 3t + 1 3r + 1 32 . FORM (4) IS NOT AS USEFUL.

7) FIELD EQUATIONS:

[3x+2p+ gt][v2u+ 1/2 - 3/2 gys] + [x+ dayte (2p+ gt)] gh = $=\frac{1}{C_{2}}\left[\left(3\alpha+4\beta+\frac{3}{2c}\right)\frac{\partial^{2}\Psi}{\partial E}\left(+2\beta\left(2\beta+3\alpha\right)\frac{\partial\Psi}{\partial E}\right)\right]\;.$ [30+2p+8][204-4 + 30 36]+[0+20+40 (2p+8)]+86 =

= 1 [(3a+46+8) 3 24+ 28(2p+3a) 3 40]. WHERE A AND V' ARE GIVEN ABOVE IN (4) & (5). (c. = /4/9.) FORM (4) IS NOT AS USEFUL.

[[40 · 40 ft] [12 · 41 - 24 - 24 - 24 - 24 - 2

THE DILATATION & IS GIVEN IN

ADEPENDENT POTENTIAL RELATIONS

BE] \$ + 2[Ma+ My BE][3 PB - 8 Pr (1 BB (\$ 2 X))] \$] ∇° φ + 2[μα+μσ €][+ 3° μ+ + 3° + € (+ 8 (∇° 2))]

3.]∇°φ \$ 3€ [[2 30 (4) + (32 - 1 8 - 1 8 2) V2]

SSE RELATIONS IN TERMS OF ϕ AND ψ_{a} WE χ BY - ψ_{a} . ∇^{2} IS GIVEN ABOVE IN (?).

8) STRESS-INDEPENDENT FOTENTIAL RELATIONS: でいる Mi(10014+2ho[82-発(186(ロッル)])+ Ni ¿ + 2 + 2 με [1 32 + + 2 β + 3 (1 8 (0 x))] } + N, $c_{az}=M_1\{\lambda_a\nabla^2\phi\}+N_1$, $c_{az}=0$, $c_{az}=0$,

(TO HAVE THESE IN TERMS OF φ & ψ., WE REPLACE """ BY - ψ.

M= - [a(32+54)] - (3a+4A) 36+ + 24 [(3a+2A) 36+ + 14 361] 0 24

c++ 3€ + 15€ =][18 +4+ +4]=+5 9) TELE GRAPH EQUATIONS FOR d) TELEGRAPH EQN. FOR THE SCALAR & VECTOR POTENTIALS:

4) (1·四基)マッケー学 30gg

HERS, FOR THE SCALAR & VELTUR POTENTIALS 1 3°4 (1) (1+N2-) 7° 11 = 11 343

i) [28 - 10 1/4 + 2] 7 20 - 1/48 + 30 + 21 1/28 + 21 (30 + 21) 2/2 }

[He+ h+ g.] Da # + [y++)

[4++4+3: [2:14+ 3: 34 - 413-1 [he + he ge] [D. ste - Semila . Semila

4) [1.+2/4+(2+2/4) gc] V(

8) STRESS - NOEPENDENT FOTE

Zm [200.7 9 5] \$20 + 5 [fe + pm Con [20 + 2 €] V2 φ + 2 [40 + β4

Z+=[1+2+8€] ∇+φ+2[p+++

できしいいかを引着を飲べる

4- [40 + 40 8x](3 ma 8v (+ 8x (4

VISCOELASTIC MODEL (PARALLEL) IN SENERAL

RELVIN-LOIGT MISCHELASTIC MODEL (PARALLEL) IN SPHERICA COORDS. FOR THE AN ALLY SYMMETRIC SPHERICAL

WEEN THE TRACES ON AND EAR OF THE STREETS AND STRAIN TENSORS

24 = {(32 + 2 /4) + (32 + 2 /4) } [EAR

HYDROSTATIC STRESS .

RACE

STR

¹γ કે€)

v 🚓)

LATIC

φ - §

NT PO

ານ ≖∄ ne 🍇

LATT

+ /4 🕶 🍱

SOVE

ENTI

= 3

. - /

-

نهناء

14

(φ+,

€45 & CUBICAL DILATATION = A

ANY VARIABLE = 0 . HE-RES, U,= U, (F, 0, t), U,= U, (F, 0, t), IN TERMS IS SUIT LASE CICCURS WHEN U = O AND φ AND Y, V , V THIS AMOUNTS TO HAVING φ = ((r, 0, t), V,=0, $ψ_0 = 0$, $ψ_0 = ψ_0(r, 0, t)$. IN TERMS OF φ , ψ & χ THIS IS EQUIVALENT TO HAVING $\varphi = \varphi(r, 0, t)$, $\psi = \psi(r, 0, t)$, $\chi = 0$. [HERE $\psi = -\frac{2}{3}\frac{1}{6}$]. THIS YIELDS. $\varepsilon_{00} = \varepsilon_{00} = 0$ BUT $\varepsilon_{00} = 0$. THIS IS NOT PLANE- STRAIN. 2) CONSTITUTIVE RELATIONS:

E RELATIONS

) Sy = 48+2 (4+ + 4+ 8€) € 4 WHERE D= EAR = Em+Em+Epp = U AA 200 = (20+ 20 3€) A+ 2(40+ 40 3€) €00 1 A + 2 (Me+Mr =) € rr

rs 発) (Me+hr発) Eur rs 発) (Me+hr発) Eur 200 = 2(Me+Mor 3E) E00 L Zn= 2(Me+Mr}) Ero E) Ero

2 = [1e+1= 3E] A + 2(He+ Mu 3E) €rr

Coo = [2 + 2, 2] △ + 2(4 + 4, 2) € 00 でか = [2+2,2] A + 2(He+ Ho 影) Eno

(200 = [He + Hu 3] 2 € re

CEMENT RELATIONS :

3) STRAIN - DISPLACEMENT RELATIONS : (26 = 26, =0) ε_{rr} = <u>δυ</u>r, ε_{θθ} = + <u>δυ</u> + μr, ε_{θθ} = μ + μο cotθ, 2ε_{rθ} = + <u>δυ</u> - μ + <u>δυ</u>

MINDEPENDENT POTENTIAL RELATIONS : OR IN COMPONENT-FORM, \$\f{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\text{\text{\text{\tilit}\text{\text{\text{\text{\text{\text{\text{\text{\text{\tilit{\text{\tin}\tilit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tert{\text{\text{\text{\text{\texi}\tilit{\text{\ti}\til\titt{\tex{\text{\text{\text{\text{\text{\texi}\tint{\text{\texit{\text{\ti

 $[(r\psi)] - r \nabla^2 \psi = \frac{3\rho}{3\rho} - \frac{1}{2^3\psi} - \frac{3\rho}{\cot\theta} \frac{3\rho}{3\psi} - \frac{1}{2^{3/4}} \frac{3\rho^2}{2^3\psi}$

 $\frac{1}{3\pi}(r\psi)] - \frac{1}{\sin\theta} \frac{1}{3\theta} (\nabla^2 \chi) = \frac{1}{7} \frac{3\theta}{3\theta} + \frac{2^2 \psi}{3^2 \theta} + \frac{1}{7} \frac{3\psi}{3\theta} - \frac{1}{\sin\theta} \frac{3}{3\theta} (\nabla^2 \chi) .$ $[\phi + \frac{2}{3} (r\psi)] + \frac{2}{36} (\nabla^2 \chi) = \frac{1}{r \sin \theta} \frac{20}{36} + \frac{1}{\sin \theta} \frac{2^2 \psi}{3r \cos \theta} + \frac{1}{r \sin \theta} \frac{2\psi}{3\rho} + \frac{2}{6} (\nabla^2 \chi)$ $u_r = \frac{\partial}{\partial r} [\varphi + \frac{\partial}{\partial r} (r \psi)] - r \nabla_r^3 \psi = \frac{\partial \varphi}{\partial r} - (\frac{1}{r} \frac{\partial}{\partial r} + \frac{\cot \varphi}{r}) \frac{\partial \psi}{\partial r}$ ルート語[中・計(が)] = ト器+(計+計)部

CACEMENT RELATIONS

δίι Δ + (μe+μν δε)είι .

ARE GIVEN ABOVE IN 3) IN TERMS OF THE DISPLACEMENT-FIELD COMPONENTS.

5) STRESS - DISPLACEMENT RELATIONS :

STRAIN - NOEPENDENT POTENTIAL RELATIONS:

[(T N 2A AS IN 7)

ENDENT POTENTIAL RELATIONS :

+ 3-[L As M] = 3-8 - 4-14-4 3-00 + 4-214-4 3-0 + 5-4-4 3-0 - 5-4-6 3-0 + 6-3-0 + 10 3-0 · D2W - [[0+3m+w] - D2W - + 30 [wind 30 (D2 2)] = + 30 - + 300 - with 30 - relines 302 - 1000 305 (022) + cut 0 3 (028) .

\$ - Aura 3280 + mine 3280 - printe 308 - printe 308 - printe 308 - 2 [+ 80 - 320] (0°2) 1 300 - 1 300 - 3000 - 3000 - 2010 200 - 2010 350 - 1 300 - 1 300 - 1 300 - 1 300 - 1 300 35 [3n - 1](022)

26000 , 26000 2€ = 2 } [(+ 3= (+ 3=(+)) - 3= (-+ b) - 2 3=0 - 2 30 + +(13-3-4 gr - ext ge . ware) gg .

€00 = [+3-+1,30](++3-(-1)]- 7-4-+3-+13--(5-1-+3-3)32

e**=[+背+戒告智][6+背(n)]-Δ=+點+結6器-(4+背-破8對)3易

OR IN COMPONENT- FORM. 量中·出十 [24·14·(24·14)]李(中以) - P 器

1 5th - 2 3th - 5 mileter - hoging 8th] + [20 oleo - (20 oleo) ft] 3th - 6 ft. 30 30 gh. - 1200 300] + [ye + he + (y - h) 35] + 39 = 6 35/40

is given in 8) ABOVE AND, Ve 3 + 3 3 + 4 3 . Fall Sa . Fall Sa . Fall Sa

?) FIELD EQUATIONS :

u = 0

り 「一一十一等」「はい、旅事器・部をは」・「アール・イナーのか」勢。 -- 9 麗女

場としているというといっとり・「かられ」をはる・から」「多いし」

以-学·子子---Q = \$# + 5m + + \$\$ + \$ coc .

FORM (1) WILL NOT BE GIVEN HERE.

ENDENT POTENTIAL RELATIONS

\$ + 2 [pe - pu =] [} ((+ 3+ (+ W) - 3+ (+ V))

000+5[he-la ge][(+gh+ + 12 gg)(0+ gh(LA))- 230- + gg(apug gh (0,5))]

(V* 2) .

}-X/4-た(の (philos gh (中空(n+ 当に n))) - milos gh (can n) + gh (gh - 中) (n・ x)]

\$ \$ \{ \phi \ \text{80} \left(\alpha + \text{\te}\tint{\texi}\text{\text{\text{\text{\texit{\texi}\text{\texit{\texit{\texi}\text{\texit{\texi}\text{\texit{\texit{\text{\texi}\text{\texit{\texi{\texit{\texi}\texit{\

(THESE ARE EQS. 4) SUBSTITUTED INTO EQE 2). 6) STRESS - ADSPENDENT POTENTIAL RELATIONS:

マナー(20-24)となる2(peのpus)[(((を (いい)) - ま(い び い))]

た。一(な・なま)でや・2(ル・ル・よ)[(ナヤ・コニン(ヤ・かい・い)・いい)

たね-(た・ンを) ロマット2(た・1年をX(本語・4年を)(か・かいり-であり]

240 , try=0 ,

た。- (た・たま)[2計(中島(中部(中間)) - 動(ではり)] ALTHOUGH W. .. THE IT IS NOT CONVENIENT TO GEPTIESS MEITHER THESE RELATIONS NOR G-4) IN TERMS OF Q AND W. (THESE ARE EQS. 4) SUBSTITUTED INTO EQS. 21) $(\Delta = \zeta_2^2 \phi)$.

OR TO PRATIONS FOR THE SCHOOL AND VENTOR POTENTIALS & AND W (1. N &) V ((() + 1) 22 1 - 0

ंश कि

WHERE,

3) GLEGHAPH ROS. FOR HAN AR & VILLTOR POTENTIALS D . 2: 1) (1-4学)化如 - 平豫 · (1-4学)(4) - 字號-

AND THE PERSON OF THE PERSON O	No. Market State Control of the Cont	
	$2\epsilon_{\bullet\bullet} = \frac{2}{r} \frac{\partial^2}{\partial \Theta \partial x} \left[\varphi + \frac{\partial W}{\partial x^2} \right] - \frac{1}{r} \frac{\partial}{\partial \Theta} (\nabla^2 \psi) + \frac{\partial^2}{\partial x^2 \partial r} (\nabla^2 \chi) = \frac{2}{r} \frac{\partial W}{\partial \Theta \partial x}$	+ + 80[2
	$2\epsilon_{rz} = 2\frac{\partial^2}{\partial r\partial z} \left[\phi + \frac{\partial \psi}{\partial z} \right] - \frac{\partial}{\partial r} \left(\nabla^2 \psi \right) - \frac{1}{r} \frac{\partial^2}{\partial z \partial \theta} \left(\nabla^2 \chi \right) = 2\frac{\partial^2 \psi}{\partial r\partial z} +$	$\frac{\partial}{\partial r} \left\{ 2 \frac{\partial^2 \psi}{\partial z^2} \right\}$
	$2 \in_{\mathbb{N}} = 2 \frac{3^2}{3750} \left\{ \frac{1}{r} \left[\varphi + \frac{3\psi}{3z} \right] \right\} + \left[\frac{3^2}{3r^2} - \frac{1}{r} \frac{3}{3r} - \frac{1}{r^2} \frac{3^2}{363} \right] (\nabla^2 \chi) = 2 \frac{3}{8}$	
7) THE EIELD EQUATIONS : LOD THE DISDLATEMENT CHEST	7) FIELD EQUATIONS :	
7) THE FIELD EQUATIONS : (FOR THE DISPLACEMENT FIELD)	i): $[\mu_e + \mu_v \frac{\partial}{\partial t}] \nabla^2 \vec{u} + [\lambda_e + \mu_e + (\lambda_v + \mu_v) \frac{\partial}{\partial t}] \vec{\nabla} (\vec{v} \cdot \vec{u}) = 9 \frac{\partial^2 \vec{u}}{\partial t^2}$	7) FIELD
[QR+28(P+Q)] \$\vec{V}(\vec{v}\cdot{u}) + Q(3R+26) \$\vec{v}^2\vec{u} = 28(3R+28) \rightarrow \vec{u}\$	OR, IN COMPONENT FORM: [[+ μ+ β+][+ 1/3
	[\(\mu \chi \mu \text{\text{3}} \] \\ \[\mu \text{\tint{\text{\tint{\text{\tin\text{\text	⊤ч।ऽ СА" ▽²य =[▽²
4):	[[ke > 1/2] [D2 U2] + [2+1/4+(2+1/4)]]] [] = 0 3 M2	₹(₹,₺)
2[2QR+S(P+2Q)]♥(♥•₡)-Q(3R+2S)♥*(♥*₡)=2S(3R+2S)ှ9₡	WILLY CT AND V FIRE GIVEN ADOVE IN 4) AND B).	ii) [1+
$\underline{\text{MOTE}}: \nabla^2 \vec{\mathbf{u}} = \vec{\nabla} (\vec{\nabla} \cdot \hat{\mathbf{u}}) - \vec{\nabla} \times (\vec{\nabla} \times \vec{\mathbf{u}})$	ii): [λ + 2μe + (λ + 2μω) ge] ♥ (♥·ũ) - (μe+μω ge) Φx (♥xũ) = ρ ਰੁੱਧ	+38[5.1
Q, R, S, P ARE OPERATORS DEPENDING ON THE MODEL.	THESE TWO FORMS () AND (1) ARE EQUIVALENT. ∇^2 given in (4).	THESE TI
8) STRESS - INDEPENDENT POTENTIAL RELATIONS:	8) STRESS-INDEPENDENT POTENTIAL RELATIONS:	8) STRES
	$\mathcal{T}_{\mathbf{m}} = \left[\lambda_{\mathbf{e}} + \lambda_{\mathbf{v}} \frac{\partial}{\partial t}\right] \nabla^{2} \varphi + 2\left(\mu_{\mathbf{e}} + \mu_{\mathbf{v}} \frac{\partial}{\partial t}\right) \left[\frac{\partial^{2}}{\partial r^{2}} \left(\varphi + \frac{\partial \psi}{\partial z}\right) - \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial \varphi} \left(\nabla^{2} \mathcal{Z}\right)\right)\right]$	۲ _۳ ۰= ۳۶۹
	200 = [20+20 3€] V2φ+2(μα+μνος) [20 80+ + 30) (+ 3€)+3 (+ 36 (+ 36 (+ 20))	, ,
	$c_{22} = \left[2 + 2 \cdot \frac{3}{62} \right] \nabla^2 \varphi + 2 \left(\mu + \mu_{\sigma} \frac{3}{62} \right) \left[\frac{3^2}{32^2} (\varphi + \frac{3\psi}{32}) - \frac{3}{62} (\nabla^2 \chi) \right]$	Con =Mi{
NO GENERAL EXPRESSION CAN BE GIVEN VALID IN ANY COORD. SYSTEM.	$\mathcal{C}_{02} = \left[\mu_{0} + \mu_{0} \frac{\partial}{\partial t} \right] \left[\frac{2}{r} \frac{\partial^{2}}{\partial \theta \partial x} (\varphi + \frac{\partial \psi}{\partial z}) - \frac{1}{r} \frac{\partial}{\partial \theta} (\nabla^{2} \psi) + \frac{\partial^{2}}{\partial z^{2} r} (\nabla^{2} \chi) \right]$	Ens - My
	$\simeq_{r_{2}} = \left[\mu_{e} + \mu_{r} \frac{3}{3\epsilon}\right] \left[2 \frac{3^{2}}{3r\delta \pi}(\phi + \frac{3\psi}{\delta \pi}) - \frac{3}{\delta r}(\nabla^{2}\psi) - \frac{1}{r} \frac{3^{2}}{3\pi 3\epsilon}(\nabla^{2}\chi)\right]$	€N0 = M1
	$\begin{aligned} & \hat{c}_{A0} = \left[N_{0} + N_{0} \frac{\partial}{\partial t} \right] \left[2 \frac{\partial^{2}}{\partial r^{2} \partial t} \left(\frac{1}{r} \left(\varphi + \frac{\partial Q}{\partial z} \right) \right) + \left(\frac{\partial^{2}}{\partial r^{2}} - \frac{1}{r} \frac{\partial}{\partial r} - \frac{1}{r} \frac{\partial^{2}}{\partial z^{2}} \right) \nabla^{2} \mathcal{Z} \right] \end{aligned}$ The SE ARE EQS. (5) WITH $\Delta = \nabla^{2} \varphi$ AND ϵ_{ij} AS GIVEN IN EQS. (6)	M = (2)
9) TELEGRAPH TYPE EQS. FOR SCALAR & VECTOR POTENTIALS	المراجعة والمراجعة ويهي فيهي فيهي فيهي المراجعة والمراجعة والمراجع	9) TELES
4) $[40R + 25(P+20)]\nabla^2 \varphi = 25(3R+25) \rho \frac{\partial^2 \varphi}{\partial x^2}$	i) $[1+M\frac{\partial}{\partial t}] \nabla^2 \phi = \frac{1}{G^2} \frac{\partial^2 \phi}{\partial t^2}$, $M = \frac{\lambda_v \cdot 2 \mu_v}{\lambda_{v+2} \mu_v}$, $Q^2 = \frac{\lambda_{v+2} \mu_v}{\rho}$	i) [2 p
الله - هـ [₹ × (♥ × ឃ)] - 25 ه الله عند الله ع	ii) $-[1+N\frac{9}{9}\epsilon]\vec{\nabla}x(\vec{\nabla}x\vec{\psi}) = \frac{1}{6^2}\frac{96\pi}{9^2}$, $N=\frac{1}{16}$, $C_0^*=\frac{1}{16}$.	" LAP
EQ. 44) CAN ALSO BE WRITTEN AS FOLLOWS:	EQ. (4) CAN ALGO BE WRITTEN AS FOLLOWS:	EQ. 44)
$\nabla^2 \vec{\mathbf{U}} = \frac{2SP}{G} \frac{\partial^2 \vec{\mathbf{U}}}{\partial t^2} \text{AND} \vec{\mathbf{V}} \cdot \vec{\mathbf{U}} = 0.$	$[1+N\frac{2}{6c}] \nabla^2 \vec{\psi} = \frac{1}{c_s} \frac{3^2 \vec{\psi}}{3c^2} \text{AND} \vec{\nabla} \cdot \vec{\psi} = 0.$	₫ ;
10) TELEGRAPH - TYPE EUS. FOR INDEP. SCALAR POTENTIALS:		10) TELE
(3 (3R+28) p 3 (2 p + 2 p) γ (3 p + 2 p	i) $[1 + M \frac{\partial}{\partial z}] \nabla^2 \varphi = \frac{1}{C_1} \frac{\chi^2}{2C_2}$,	υ: {2β+
m	21) [1+Nge] 02 W = 1 36	ದು ∇°1 FOR ವೈ.
nn o 2,x - 32 d 364	WHERE, M = 2 + 2 Hy , N = Hz , C1 = 2 + 2 Ha , C1 = 18 .	Δşί
") SOLENOIDAL SOLUTION OF VECTOR TELEGRAPH- EQN.	11) DOLENGIDAL SOLUTION OF THE SECTOR TELEGRAPH & CO	
THE SOLUTION EXISTS ONLY IN FIVE COORDINATE SYSTEMS (CYLINDRICALS SPHERICALS INCLUDED)	IT CAN BE SHOWN THAT THE SOLGHOIDAL (18, \$\vec{7}, \$\vec{1}\) =0) SOL 1 PARTY (18, \$\vec{1}\) IS THE GOLUTION OF [I+N&] \$\vec{1}1	.UTION (H O AND - 현(호흡)
BUT IT VARIES WITH THE SYSTEM USED, AND NO EXPRESSION EXISTS VALID FOR ALL SYSTEMS.	WHERE W(r, 0, a, t) AND X(r, 0, a, t) ARE TWO NEW SCALAR FUN EQUATIONS IN [1 + N &] V2 W - 3 8 AND [1+N &]	
NO GENERAL EXPRESSIONS FOR RELATIONS (4), (6) OR (8) ABOVE CAN BE GIVEN FOR THIS REASON.	EQUATIONS 10, [1 + N &] V2 ψ AND [1+N &] V	7 · 2 ·
(SEE ! P. MORSE & M. FESHBACH "METHODS OF THEORETICAL PHYSIOS" VOL. 2, CHAPTER 18. M. GRAW-HILL, 1955)	WHICH RELATE THE THREE CYLINDRICAL COMPONENTS U. W.	N OF T
	WAND X. SUBSTITUTING & FROM THE SOLUTION (A) INTO CYLINDRICAL COMPONENTS OF THE DISPLACEMENT FIELD AND	THE SC
	AS GIVEN ABOVE IN EQS. (4), THE SOLUTION (A) OR (B) INVOIDED TO WAVELED. (OR TELEGRAPHIED, WITHOUT DAMPING) PROVIDED TO	
12) REMARIES:	SEMARILE:	
SEE THE COMPARTMENTS TO THE RIGHT.	B) THE BASIC RESULT OF THIS TABLE, AND THAT IS WHY IT WAS OR SATISFIED IN EACH ONE OF THE CASES CONSIDERED AND THEN	I THE DI
	BOUNDARY VALUE PROBLEMS, AND WHICH IS COMMON IN OTHE THE READER FAMILIAN WITH FLECTRODY VANIC THEORY WILL GU	ICKLY N
	5) IT IS TVIDENT THAT IN ALL THE CASES INTHIS CHART WE RE C) IN TYLINDRICAL COORDS, THE PLANE-STRESS RESULTS CAN BE	E QUICHI
	1) THE CASE OF PLANE-STRAIN (OR PLANE-STRESS IN VIEW OF C) ASC C) A CASE OF BOME INTEREST, WHICH REDUCES THE TWO VIBCOUS C	
	-	

MTO EQS. (3).

€ = 300 + 1 300 - 12 300 , € = 1 300 + 1 30 - 1 300 + 1 300 , 2€

6

 $\frac{\partial^2 \psi}{\partial \theta \partial z} + \frac{1}{\Gamma} \frac{\partial^2 \psi}{\partial z} \left[2 \frac{\partial^2 \psi}{\partial z^2} - \nabla^2 \psi \right] + \frac{1}{2 \Gamma \partial z} \left(\nabla^2 \chi \right) .$

4.[26]

1 OF

NS 🤇

DISPU

CIPL

HIN

 $\left[3\alpha+2\beta+\frac{\partial}{\partial t}\right]\left[\nabla^2 u_{r^{-}} \stackrel{u_{r}}{\rightleftharpoons} - \stackrel{2}{\rightleftharpoons} \stackrel{\partial}{\partial t^{0}}\right] + \left[\alpha+\frac{\lambda_{0}+\mu_{0}}{\mu_{0}}(2\beta+\frac{\partial}{\partial t})\right] \stackrel{\partial}{\partial t} =$ 2β+**3** - 5 85 A [4+ 4+ 30] [224- 245- 200 - 2400 - 2500 00] + [2+ 4+ (2+4) 30] $=\frac{1}{C!}\left[\left(3\alpha+4\beta+\frac{3}{2\epsilon}\right)\frac{\partial^2 u}{\partial t^2}+2\beta(2\beta+3\alpha)\frac{\partial u}{\partial t}\right]\;.$ [/4+ /4 of][\(\nabla^2 U_0 + \frac{2}{70} \frac{3U}{50} - \frac{U_0}{700000} - \frac{2CUt \theta}{700000} - \frac{3U}{700000} \right) + [\lambda_0 + \mu_0 + \mu_0 + \mu_0 \frac{2}{5C}] \frac{1}{7} \frac{3}{5C} \] 34 · 9 324 $[3\alpha + 2\beta + \frac{3}{26}][\nabla^2 u_{\phi} - \frac{u_{\phi}}{r_{\phi}} + \frac{2}{r_{\phi}} \frac{\partial u_{\phi}}{\partial \phi}] + [\alpha + \frac{\lambda_{\phi} + \mu_{\phi}}{\mu_{\phi}} (2\beta + \frac{3}{26})] + \frac{3}{r} \frac{\partial \phi}{\partial \phi} =$ [[[] + [] =]] [] = + [] = + [] = 3 Un + 2 cot \(\text{0} \) 3 \(\text{0} \) | + [\lambda + 1 22 · $=\frac{1}{C^4}\left[\left(3\alpha+4\beta+\frac{\partial}{\partial t}\right)\frac{\partial^2\psi}{\partial t^4}+2\beta\left(2\beta+3\alpha\right)\frac{\partial\psi}{\partial t}\right]\ ,$ ii) [1 + 2 μ + (2 + 2 μ) 3] ♥(♥·ũ) - [μ + μ 3] ♥x (♥x ũ) = 9 3 1 WHERE Δ AND ∇^2 ARE GIVEN ABOVE IN (4) & (5). (c. = /4/9.) THE DILATATION & IS GIVEN IN 5) ABOVE AND, Ve 32 + 2 3 + 1 32 FORM (1) IS NOT AS USEFUL. 8) STRESS- INDEPENDENT POTENTIAL RELATIONS 8) STRESS - INDEPENDENT POTENTIAL RELATIONS: RESS- $\mathcal{T}_{\mathbf{r}} = \left[\lambda_{\bullet} + \lambda_{\tau} \frac{\partial}{\partial r}\right] \nabla^{2} \phi + 2 \left[\mu_{\bullet} + \mu_{\tau} \frac{\partial}{\partial r}\right] \left[\frac{\partial^{2}}{\partial r^{2}} \left(\phi + \frac{\partial}{\partial r} (r \, \mathcal{V})\right) - \frac{\partial}{\partial r} \left(r \, \nabla^{2} \, \psi\right)\right]$ - 2 = M, { λ. √2 φ + 2 μe [32 φ - 3 + (+ 2 φ (√2 χ))] } + N, $\mathcal{Z}_{00} = \left[\lambda_{0} + \lambda_{0} \frac{3}{36}\right] \nabla^{2} \varphi + 2 \left[\mu_{0} + \mu_{0} \frac{3}{36}\right] \left[\left(\frac{1}{4} \frac{3}{37} + \frac{1}{62} \frac{3^{2}}{36^{2}}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{37} + \frac{1}{62} \frac{3^{2}}{36^{2}}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{37} + \frac{1}{62} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{37} + \frac{1}{62} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{37} + \frac{1}{62} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{37} + \frac{1}{62} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{37} + \frac{1}{62} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{62} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{62} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} (r \psi)\right) - \nabla^{2} \psi - \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36}\right)\right) + \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36} \frac{3}{36}\right) \left(\varphi + \frac{3}{37} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36}\right)\right) + \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36}\right) \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36}\right) + \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36}\right) \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36}\right) + \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36}\right) \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36}\right) + \frac{1}{6} \frac{3}{36} \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36}\right) \left(\frac{1}{4} \frac{3}{36} + \frac{1}{6} \frac{3}{36}\right) + \frac{1}{6} \frac{3}{36$ (∇²x))] $\xi_{00} = M_1 \left\{ \lambda_e \nabla^2 \varphi + 2 \mu_e \left[\frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \theta^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial \theta} (\nabla^2 \chi) \right) \right] \right\} + N_1$ <u>,(</u>;;;;(▽²'''ҳ)] $\sum_{\phi} = \left[\lambda_{0} + \lambda_{0} \frac{\partial}{\partial t} \right] \nabla^{2} \phi + 2 \left[\mu_{0} + \mu_{0} \frac{\partial}{\partial t} \right] \left(\frac{1}{r} \frac{\partial}{\partial r} + \frac{\cot \theta}{r^{2}} \frac{\partial}{\partial \theta} + \frac{1}{r^{2} \sin \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right) \left(\phi + \frac{\partial}{\partial r} \right) \left(\frac{\partial}{\partial r} + \frac{\partial}{\partial r} \right) \left(\frac{\partial}{\partial r} + \frac{\partial}{\partial \theta} \right) \left(\frac{\partial}{\partial \theta} + \frac{\partial}{\partial \theta} \right) \left(\frac{\partial}{\partial$ $c_{zz}=M_1\{\lambda_s \nabla^2 \phi\} + N_1$, $c_{sx}=0$, $c_{zx}=0$, 20 = [με+μ+ β+][2 30 (sinθ 84) (φ+ β+(rψ))+(+ 88 - cotθ 88 - 74 μ-8 32) $C_{re} = M_1 \mu_{\overline{q}} \left\{ 2 \frac{\partial^2}{\partial r \partial \theta} \left(\frac{Q}{r} \right) + \left[\frac{\partial^2}{\partial r^2} - \frac{1}{r} \frac{\partial}{\partial r} - \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right] \left(\nabla^2 \mathcal{X} \right) \right\}$ M. = $\frac{\partial E(2\beta - \partial E)}{\partial A^2 - \frac{\partial E}{\partial A^2}}$ (TO HAVE THESE IN TERMS OF $\phi \in \psi_a$, WE REPLACE $\nabla^2 X$ BY $-\psi_a$) τη=[μο+μν δε][= no δ+ (φ+ β+(νψ))] - sino δφ (∇²ψ) + δσ (β+ - + $N_{1} = -\left[\frac{\alpha(3\lambda_{\bullet}+2\mu_{\bullet})}{(3\alpha+2\beta)^{\frac{3}{4}}}\right]\left[\frac{-(3\alpha+4\beta)\frac{3^{\frac{3}{4}}}{5^{\frac{3}{4}}} + 2\beta\left[(3\alpha+2\beta)\frac{3}{5^{\frac{3}{4}}} + \frac{1}{2\beta}\frac{3^{\frac{3}{4}}}{5^{\frac{3}{4}}}\right]}{4\beta^{\frac{3}{4}} - \frac{3}{5^{\frac{3}{4}}}}\right]\nabla^{2}\phi$ Cro=[μe+μ+ 3ε][2 3+ (+ 3θ (φ+3+(rω))) - 3θ (σ²ω) - 10 3θ (3+ 1+)(IN (7). EQ.5. (6). 9) TELESRAPH EQUATIONS FOR THE SCALAR AND VECTOR POTENTIAL D) TELEGRAPH EQS. FOR THE SCALAR & VECTOR POTENTIALS: EGRA TIALS : 12) (1+N多) (中) + 4) $(1+M\frac{\partial}{\partial x})\nabla^2\phi = \frac{1}{C^4}\frac{\partial^2\phi}{\partial x^2}$ λ <u>δεν</u> . i) [2p · 40 € , 8c] \rangle \phi - \frac{1}{2} \{(4p + 3a + \frac{3c}{2}] \frac{3c}{2} + 2p (3a + 2p) \frac{3c}{2} \frac{1}{2}} B . 400 $M = \frac{\lambda_{\nu} + 2\mu_{\nu}}{\lambda_{0} + 2\mu_{0}}$, $N = \frac{\mu_{\nu}}{\mu_{0}}$, $C_{0}^{2} = \frac{\lambda_{0} + 2\mu_{0}}{\rho}$ AND V. W = O ♥(%+45)是 Q. **७**, ♂.∜-0 THESE EQS. ARE OBTAINED BY SUBSTITUTING $\vec{\mathbf{u}} = \vec{\nabla} \phi + \vec{\nabla} \mathbf{x} \vec{\nabla}$ IN FOR CLECCE (ie, Here he on Days, in RUBBER) EQ.(i) IS: **₩**♥.₩ =0, Ct cel OF THE FIELD EQS. 7). EQ. (1) CAN ALSO BE WRITTEN AS I E FORM $\Delta_{5} \alpha = \frac{C}{10} \left[\frac{368}{936} + (3\alpha + 59) \frac{26}{960} \right]$ 10) TELEGRAPH EQUATIONS FOR THE INDEPENDENT SCALAR POTENT 10) TELEGRAPH - EQS FOR THE INDEPENDENT SCALAR POTENTIALS. POTENTIALS: 1) (1 + M &) Do & = 1 368 . (1 + M &E) Do A = 1 368 . THE EQ. FOR \$ IS THE SAME AS ABOVE IN 9). THE EQ. FOR \$2 IS: EQ. WHERE, M- 20-34 , N- HE , C'- 34-34 , C- H - 〇~(〇~) - 台(2月-景) (2月-) (2月-) OR IN TERMS OF Wa. 2-434}-0 ひ。ゆ - デ (5b+野) 湯 11) SOLENOIDAL SOLUTION OF THE VECTOR TELEGRAPH EQ. N. & ANI PO CHANGACE BE . MALLE MOTANGE HO IT CAN BE ENOWN THAT THE SOLUTION OF EQS. 9) (1) ABOVE IS GIVEN THE TWO NEW SCALAR FUNCTIONS VIC. 9, 0, 0, 0 SQALAR TELEGRAPH EQS (in, (1+N $\frac{1}{2}$) $V^4 V = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ AND (1-N $\frac{1}{2}$) (NOTE THAT V IS NOT V OPENING UP THE SOLUTION (A FOR GENERAL CYLINDRICAL COORDINATES BUT NOW WITHOUT THE & DEPENDENT THAT THE SOLEHOIDAL BOLUTION OF (1+N) 040 + 2 50 15, INDR t))] * - Ê. マ*ル TELEGRAPH EQUATION, VIX. (1. N.) 7 % = 1. 2 . NOTE THAT ET ON A 8-INDEPENDENT FUNCTION, THEY ARE ALSO A INDEPENDENT IN THIS UATIO WHICH RELATE THE J SPHERICAL COMPONENTS OF THE VECTOR POTE W. = 0 . W. = - VS Z (r.e. c) (B) . SO THE VECTOR POTENTIAL HAS ONLY BOLENOIDAL BY THE GAUGE CONDITION (U = 0) TO THE 2 BOAL STITUTING SLN. (A) INTO U . TO . T. D YIELDS THE DISPLACEMENT-) INTE SOLUTION (A) IS VALID IN SPHERICALS ONLY, AND WHEN IT IS SUBSI WE. WE REPEAT THAT ALL THIS HOLDS IN THE ASSENCE OF DAMPING WHEN SEQUATION, AS IT OCCURS IN GLASTICITY, PROVIDED THAT IN THEM SATISFIES A THE REGULT IS THE DISPLACEMENT - INDEPENDENT POTENTIAL REL THAT AUXILIARY RELATIONS NEEDED TO PROVE THIS ARE : $\nabla = [(\theta \psi)_A i^a] = \nabla \cdot [(\theta \nabla^2 x)] = [\nabla (\nabla^2 x)]_A i^a$. IN THE ABSENCE OF VISCO SITY (EQ. (A) ABOVE IS THE SOLENDIDAL SOLUTION OF THE VECTOR WA PROVIDED THAT THEN W AND & HAYISTY & SCALAR WAVE-ES 12) REMARKS : () REMARKS (4), 6), a) OF THE CYLINDRICAL CASES TO THE LEFT (ALS EGRAPH-TYPE EQS. 10) THEN THE FIELD-EQS 7) ARE AUTOMATICALLY 10) 11) NOTE AGAIN THAT IN SPITE OF THE APARENT GENERALITY OF THE RESPECTIVELY. THIS TECHNIQUE, WHICH IS BASIC TO SET-UP AND SOLVE HIS TY ABOVE WITH ITS VECTOR OPERATORS, IT IS ONLY VALID IN SPHER FURTHER THAT THE TWO PARTS (IS, \$ (FW) AND \$ [Valid in sphere of the control of th MS DEVELOPPED FOR ALL THESE CASES AND VISCOELASTIC MODELS. HE DEVELOPPED FOR ALL THESE CASES AND VISCOBLASTIC MODELS.

LOMB (14, T.D =0) RATHER THAN A LORENTZ (14, T.D + 150 +0) GAUGE.

ELVIN-VOIGT MODEL, AND/OR 0=0, p=0 FOR THE MAXWELL MODEL).

THE PLANE-STRAIN CASES BY \$\frac{1}{2}\text{ DEFINED TO BE: \$\frac{1}{2} = 2\lambda \mu_0 / (\lambda_0 + 2\mu_0).} \text{ L. + 2\lambda_0}.

O. THEN, THERE IS ONLY +-DEPENDENCE (14, U,= \mu_0 (\text{.0}) \text{ E \text{.0}} \text{ \text{.0}} \text{ \text{.0}}. 0) 🗱 THEY ARE USUALLY PERPENDICULAR) EVEN WHEN Y= 2. CASES (ii) THERE IS NO WAY TO HAVE A PLANE-STRAIN OR PLANE-STRESS THE CLOSEST WE CAN GET TO THEM IS THE ANIALLY SYMMETRIC C DNLY :

26-6-2-30 - 1330 - 1330 - 1330 - 2500 - 27300 - 27300 - 27300 - 27300 - 2730 - 2730 - 2730 - 2730 - 2730 -

7) FIELD EQUATIONS :

7) FIELD EQUATIONS:

195.4) INTO EQS. 3).

DEC

THINK THE PARTY THE DESCRIPTION OF THE PRINT 320 - 200ta 30 + 21ns 2000 - 200ta 320 + 1 30 - 000 + 1 30 - 000 30 - 1 30 30 (V2X). $\frac{\partial^2 \psi}{\partial \theta \partial \theta^2} + \frac{1}{\sin \theta} \frac{\partial^2 \psi}{\partial r^2 \delta \theta} - \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} - \frac{2}{r^2 \sin \theta} \frac{\partial \psi}{\partial \phi \partial \theta} - \left[\frac{1}{r} \frac{\partial}{\partial \theta} - \frac{2}{\partial r \partial \theta}\right] (\nabla^2 \mathcal{X}) \ .$ $\frac{3^{3}\psi}{476} + \frac{3^{3}\psi}{5136} - \frac{\cot\theta}{72} + \frac{3^{2}\psi}{763} + \frac{2\cot\theta}{723076} + \frac{3^{2}\psi}{723076} - \frac{2}{72} + \frac{3}{369} - \frac{1}{300} + \frac{3}{369} + \frac{1}{7} (\nabla^{2}\chi).$ We gay (+) this says (3). OR IN COMPONENT- FORM. 高+ ye + (2++yv)計 マ(でな) - p 発 $= \frac{2 \operatorname{tim} \operatorname{Cot} \Omega}{2 \operatorname{tim} \operatorname{Cot} \Omega} = \frac{2 \operatorname{dis}}{2 \operatorname{dis}} + \left[\lambda_a + \mu_a + (\lambda_{a} + \mu_{a}) \frac{\partial}{\partial t} \right] \frac{\partial r}{\partial \Delta} = 9 \frac{\partial^{2} \operatorname{tim}}{\partial t}$ () - 2 (ct 0 3 ()) + [2 + /4 + (2+ /4) &] + 30 = 9 3 14 12 - 30 + 250 0 30 + [14 + /40 + (14 + /4) 82] TSIND 30 - 9 821] →(→·ū) -[4+4+&] →x(→xū) = 9 3000 IN 5) ABOVE AND, Va 32 + 2 3 + 6 34 + cote 36 + 1 1 10 10 34 STENTIAL KELATIONS + p+ 3=][32 (0+3+ (rw))-3+(r -2)] + /+ 8=][(+ 3+ + 12 30)(+ 3+ (+ 3) - + 2 + 2 (sin = 3 (\nu \times))] +μ+ 3+ 1(+ 3+ + cot θ 3+ + 1 con θ 30 × γ con θ 30 × (φ + 3+ (r ψ)) - ∇ w + 3 (r n n 3 3 (r n n 3 3 (r n x))] $\left(\varphi + \frac{3}{37} (r \psi) \right) + \left(\frac{1}{7} \frac{3^2}{58} - \frac{\cot \theta}{r} \frac{3}{58} - \frac{3}{78 \ln 78} \frac{3^2}{58} \right) (\nabla^2 \mathcal{Z}) \right].$ $\left\{ \left(\varphi + \frac{\partial}{\partial r} (r \psi) \right) \right\} - \frac{1}{8109} \frac{\partial}{\partial \varphi} (\nabla^2 \psi) + \frac{\partial}{\partial \varphi} \left(\frac{\partial}{\partial r} - \frac{1}{r^2} \right) (\nabla^2 \chi) \right\}.$ THESE ARE EQS. 6) SUBSTITUTED (+ 3 (r w)) - 3 (v w) - 1 3 (v 2) . INTO EQ6. 2). FOR THE SCACAR AND VECTOR POTENTIALS $|\phi|$ and $|\widehat{\psi}|$: 16) (1+N) Qx(Qx)) + = 32 -0 WHERE, $c_0^2 = \frac{\lambda_0 + 2\mu_0}{\rho} , \quad c_0^2 = \frac{\mu_0}{\rho} .$ BY SUBSTITUTING $\vec{u} = \vec{\nabla} \phi + \vec{\nabla} \times \vec{D}$ into the alternative forms Eq. (1) can also be written as follows, $\vec{\nabla} \cdot \vec{D} = \vec{C} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D} = \vec{C} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D} = \vec{C} \cdot \vec{D} \cdot$ FOR THE INDEPENDENT SCALAR POTENTIALS W. W. X. N= He , C1 = 3-244 , C1 = He

- **8=**(3

)(**v**

Vª2

LS 4

1

4

TO T

FOLL

TIAL

ua)

ENS

VEN

. 4

ENT A

AVE-S. (

E \$0

RICAL

(**()**

51714

A58

は (1+ 4分) ロッカー は かな . いこ) (1+ 4号) ロッスー は かない L Vª AS IN EQ. ?).

OF THE VECTOR TELEGRAPH EQ. N GENERAL SUMERICAL COORES: Terk. Talle 35 . W- who 38 - + 36 + 365 . H- - 38 - who 35 - who 364 IRAL COMPONENTS OF THE VECTOR POTENTIAL Q (WHICH IS ALSO E CONDITION U. W - O) TO THE 2 SCALARS W AND X. PHERICALS ONLY, AND WHEN IT IS SUBSTITUTED INTO # - FOF THE REMENT - INDEPENDENT POTENTIAL RELATIONS IN EQS. 4) ABOVE. DED TO PROVE THIS ARE: $\nabla_{x} \{(\theta \psi)_{x} \gamma\} = \theta \psi - \theta \nabla^{2} \psi + \theta (\theta \psi \cdot \gamma)$ AND AT . IN THE ABSENCE OF VISCO SITY (14, M= N=0, 14, ELASTICITY)
ANOIDAL SOLUTION OF THE VECTOR WAVE-EQ. (V= 3 14) W=0
AND & SATISFY & SCALAR WAVE-EQS. (14, (V= 3 14) E=0 ...)

THE CYLINDRICAL CASES TO THE LEFT ALSO HOLD HERE. HTE OF THE APARENT GENERALITY OF THE SOLENOIDAL SOLUTION II)A) R OPERATORS, IT IS ONLY VALID IN SPHERICAL COORDINATES. NOTE PARTS (4, 0, (FW) AND TELTER (6,)) ARE DIFFERENT (16, PENDICULAR) EVEN WHEN VEZ. E A PLANE-STRAIN OR PLANE-STRESS SITUATION IN SPHERICAL COORDS ET TO THEM IS THE ANIALLY SYMMETRIC CASE B) TO THE RIGHT.

26 , 26 , 26 , o 2 = = 2 \frac{\partial}{\partial} \frac{1}{r} \frac{\partial}{\partial} \left(\phi + \frac{\partial}{pr} (r \psi) \right) - \frac{\partial}{\partial} \frac{\partial}{pr} \partial \pa +(32 - 2 - 12 32 - Cate 3 + 12 102 0 00 "

7) FIELD EQUATIONS :

i) [[4 + 14 } }] [\$\sigma_0^2 u_+ - \frac{2u}{4} - \frac{2}{6} \frac{3u}{6} - \frac{2u_0 \cos 0}{12} }] + [\lambda_0 + \lambda_0 + \lambda_0 + \lambda_0 \rangle \frac{2u}{6} \frac{2}{6} = \frac{2u_0 \cos 0}{12} }] [he+he ge][\(\sigma_0 + \frac{32}{32} \) = \(\frac{42000}{32} \) + \[\frac{4}{3} + \he+(\gamma^2 + \he) \] \(\frac{92}{32} = \frac{32}{32} \) V2 = 32 + 2 3 + 1 30 + cot 0 30 $\Delta = \frac{3u_r}{2u_r} + \frac{2u_r}{2u_r} + \frac{1}{2u_r} + \frac{3u_r}{2u_r} + \frac{1}{2u_r} \cot \theta$ FORM (1) WILL NOT BE GIVEN HERE.

8) STRESS-INDEPENDENT POTENTIAL RELATIONS: C++ = (2+ 1+ 3+) ∇2+2(μ++μ+3+)[32(φ+3+(rψ)) - 3+(r √2 ψ)] $\zeta_{\bullet\bullet} = (\lambda_{\bullet} + \lambda_{\circ} \frac{3}{24}) \nabla^{2} \varphi + 2 \left(\mu_{\bullet} + \mu_{\bullet} \frac{3}{24} \right) \left[\left(\frac{1}{r} \frac{3}{5r} + \frac{1}{r^{2}} \frac{3^{2}}{36^{2}} \right) (\varphi + \frac{3}{6r} (r\psi)) - \nabla_{\bullet}^{2} \psi \right]$ てゅー(ル・ル・ま)ママの+2(ル・ル・ま)(中部・中央 ま)(中部・中央 ま)(の・まいか)ーマルリ] 200 = 0 , 2r4 = 0 ,

200 = (He + Ho ge)[2 gr (+ go (4+gr (+4))] - 30 (V20)] . ALTHOUGH W. = - DW IT IS NOT CONVENIENT TO EXPRESS NEITHER THESE RELATIONS NOR G-4) IN TERMS OF ϕ AND ψ .

(THESE ARE EQS. 6) SUBSTITUTED INTO EQS. 21) ($\Delta = \nabla_{\phi}^{2}\phi$).

9) TELEGRAPH EQS. FOR ECALAR & VECTOR POTENTIALS P. 7: 4) $(1+M_{SE}^2)\nabla_{\bullet}^2\phi = \frac{1}{4}\frac{\partial^2_{V_{A}}}{\partial v^2}$, (i) $(1+N_{SE}^2)\nabla_{A}(\nabla_{A}\nabla) + \frac{1}{4}\frac{\partial^2_{V_{A}}}{\partial v^2} = 0$ WHERE M, N, C. , C. ARE GIVEN TO THE LEFT M EQS. F-9.). EQ. (2) CAN ALSO BE WRITTEN IN THE FORM : (1+NB) V2 V - 2 200 TE IS GIVEN IN 7).

O) TELEGRAPH EQS. FOR THE INDEPENDENT SCALAR POTENT ALS: 1) (1 - M gr) 000 0 = 1 300 . (1) (1+ Ngl) 000 h = 1 250 THE TELEGRAPH TYPE EQ. FOR W. 15: (++ N 3) [V. W. - 18 ma] = = = 37 % WHICH IS NOT AS CONVENIENT AS (2). H) SOUGHOUGH EQUATION OF LECTOR TELEGRAPH EQUATIONS

THE SOLUTION OF EOS. 9 LEY'IN SPHERICAL COORDS. WITH AKIAL SYMMETRY IS NOW GIVEN BY: \$\times_a (FW) = (C_W)_AF. GE WHICH IN COMPONENT FORM IS: \$\times_a O, \$\times_a = \frac{1}{2}. (8)
NOTE AGAIN THAT W IS NOT [\$\tilde{\pi}\$]. PROVIDED THAT \$\tilde{\pi}\$(.6)

AGAIN, IN THE ABSENCE OF VISCOSITY (16, M=N=O, WR, ELASTICITY) EQ. (A) IS THE SOLENOIDAL SOLUTION OF THE LECTOR DAVE-EQ. (12-12-12) \$\tilde{\pi} = O\$ IN SPHERICAL COORDS. WITH AXIAL SYMMETRY, PROVIDED THAT THE ECALAR FUNCTION TYPES. SATISFIES A SCALAR WAVE-EQUATION. (14. [14. 15 16] \$ =0) NOTE THAT EQ 10 (12) FOR US IS MORE COMPLICATED THAN 10 (1) HENCE, EQS. 4) & 8) ARE BEST LEFT INTERMS OF GAW.

2) REMARKS

- 2) REMARKS (1), (1), (2) OF THE CYLINDRICAL CASES TO THE LEFT ALSO HOLD HERE.
- WI THE MARKELL MODEL IN SPHERICAL COORDS. WILL BE LEFT AS AN EXERCISE FOR THE READER.
- THIS ENTIRE CHART, VALID FOR ARBITRARY TIME- DEPENDENCE, WILL BE PARTICULARIZED FOR HARMONIC TIME-DEPENDENCE OF THE FORM & LAST IN A COMPANION CHART. (6. GAUNALED, 75).

10 NOVIN VOICE VOICE ANTIC MODEL COPPER STORE AND STORE OF THE STORE O	Control of the Contro
DEFLATION POTWING HE TRACES CAR & CAR	1) of the state of two N in taken a contract to
$c_{kk} = [3\lambda_{e} + 2\mu_{e} - i\omega(3\lambda_{v} + 2\mu_{v})] \epsilon_{kk}$	$C_{44} = \frac{3\lambda_{4} + 2\mu_{4}}{\omega^{2} + (3\alpha + 2\beta)^{2}} \left[\omega^{2} - i\omega(3\alpha + 2\beta)\right] \epsilon_{44}$
$\hat{\mathcal{E}}_{\hat{q}\hat{q}} = \text{BULK STRESS} , \hat{\mathcal{E}}_{\hat{q}\hat{q}} + \hat{\mathcal{E}}_{np} + \hat{\mathcal{E}}_{np} + \hat{\mathcal{E}}_{j,1} = \Delta = \text{DILATATION} \; .$	CHE = BULK STRESS . SHED LATATION A. ALA "VISCOUS CONTO
2) CON. F. FUT VE RELATIONS :	TO AND TOTAL TO BE AND AND TO A TOOK , Questione,
HERE $K = 0$, $5 = \frac{1}{2}$, $P = \lambda_e - i\omega \lambda_b$, $Q = \mu_e - i\omega \lambda_b$, HENCE,	g · · · · · · · · · · · · · · · · · · ·
$\varepsilon_{ij} = (\lambda_e - i\omega\lambda_v)\delta_{ij} \epsilon_{ik} + 2(\mu_e - i\omega\mu_v)\epsilon_{ij}$	Cy = (ω- 10 - 11) [λεδή Ερη + 2μεξή] + N, WHERE,
HERE, A., U. = ELASTIC (LAME) CONSTANTS, Au, 'Uu = VISCOUS CONSTANTS.	$N_{4} = -\frac{\alpha(3\lambda_{4} + 2\mu_{6})}{\omega^{2} + (3\alpha + 2\beta)^{2}} \left[\frac{\omega^{2}(3\alpha + 4\beta) - (\omega 2\beta(3\alpha + 2\beta - \omega^{2}/2\beta))}{\omega^{2} + 4\beta^{2}} \right] \delta_{ij} \Delta$
3) STRAIN- DISPLACEMENT RELATIONS:	(THE'SE AKE
$ \xi_{rr} = \frac{3\pi}{3r}, \xi_{\phi\phi} = \frac{r}{r} \cdot \frac{3u_{\phi}}{3\theta} + \frac{u_{r}}{r}, \xi_{\phi\phi} = \frac{3\pi}{3r}, 2\xi_{\phi\phi} = \frac{3u_{\phi}}{3\theta} + \frac{1}{r} \cdot \frac{3u_{\phi}}{3\theta}, $. $2 \in_{r_{R}} = \frac{\partial u_{r}}{\partial r} + \frac{\partial u_{r}}{\partial z}$, $2 \in_{r_{R}} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{r}}{\partial z} = \frac{1}{r} \frac{\partial u_{r}}{\partial$
$\vec{u} = \vec{\nabla}(\phi + \frac{\partial \psi}{\partial \phi}) + \kappa_2^2 [\psi \hat{\epsilon}_a + (\nabla x) \times \hat{\epsilon}_a] \qquad \text{or in comp}$	ONE NT FORM
42.	
$ u_{r} = \frac{\partial}{\partial r} \left(\phi + \frac{\partial u}{\partial z} \right) + \frac{\kappa^{2}}{r^{2}} \frac{\partial E}{\partial \theta} , \qquad u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial x}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial u}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial u}{\partial r} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial u}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial u}{\partial r} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial u}{\partial r} $ $ u_{\theta} = \frac{1}{r} \frac{\partial u}{\partial r} \left(\phi + \frac{\partial u}{\partial z} \right) - \kappa_{2}^{2} \frac{\partial u}{\partial r} $	
where $\psi = \psi(r_1 \circ r_2) \circ c$, $\psi = \psi(r_1 \circ r_2) \circ c$. $\chi = \chi(r_2 \circ c)$, から V = にかた・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
STREE SED SPLA ENENT ASLATION	5) LIRE DEPLACEMENT RECATIONS :
~ (λε τωλ) δ, Δ + 2 (με - τωμ) ε, ωνεπε, βε; = (λε τωλ) δ, Δ + 2 (με - τωμ) ε, ωνεπε, ων	$c_{ij} = \left(\frac{\omega_3 + 4\mu_2}{\omega_3 + 4\mu_2}\right) \left[\lambda_e \delta_{ij} \Delta + 2\mu_e \epsilon_{ij}\right] + M_i$
TOTEL COMMAS IN SUBIND LES TITH HE COVAR AND DERIVATIVES	
) Lind a martingly of the sections :	
	30370 - 1 3756 (V2 t) + 10 36 (V2 X)
·	[용종·수용조[용뉴·수용위]·수용인[용소(MS)·수 Ask]
$e^{ab} = \frac{2\pi}{3s} \left(\dot{\Phi} + \frac{2\pi}{3\hbar} \right) + K_s^2 \frac{2\pi}{3\hbar} , \qquad \qquad s = \frac{2\pi}{3s} - \frac{2\pi}{3s} + \frac{2\pi}{$	智[シカ・ナラテ・ナラッド
2.604 - 2 32 ((+ 1월) + 12 3월 - K2 3년3 · · · · · · · · · · · · · · · · · ·	+ + 80[2 5 4 - V W] + 5 5 E (V x) .
53	$+\frac{3}{6\pi}[2\frac{3^{3}W}{32^{3}}-\nabla^{2}W]-\frac{1}{7^{2}}\frac{3^{3}}{3038}(\nabla^{2}X)$.
2600日2536[中(日十3年)]-大京(京本-二多年-九子子)、十日易(日	**
) Fig. C. Ava tons:	7) FIGURE GUATIONS:
i): $\nabla^2 \vec{u} + \left[1 + \frac{\lambda_1 - (i)\lambda_2}{\lambda_1 - (i)\lambda_2}\right] \nabla (\vec{v} \cdot \vec{u}) + \kappa_1^2 \vec{u} = 0$ where,	·가(+ 福)(4·C·개발 6(4·C) · 등로) · 월[4·C·부4(4·C) · 등로] · 등로
HE = PWY (He-IWHU) . THIS EQ CAN BE OPENED UP BY MEANS OF	OR IN COMPONENT FORM. + EMILY - AD & + O
マ·は · (では、場・異なりた。(ひ·は・場・異なりも。 - [ひ·は] 色。.	[a,ro- ñ・岩部]・六部・ハno-o: [a,ro]・八郎・ハno-o: [a,rr- ñ・岩鷸]・八部・ハno-o:
AND The state of t	
THE GRADIENT OPERATOR & THE DILATATION & ARE GIVEN ABOVE.	- μ _θ (3α · 2β · (ω) . W · 2 (3α · 4β · ω) · 2β μη(3α · 2β · (ω))
4) Path (1) + [2 + \frac{2a - \text{table}}{Pa - \text{table}}] \vert (4.1) + H_2 \vert = 0	() (1-器)[本語 ((のの) - ひ·(ひ·に)・発化]・器(すの(のの) - C・(のの
407E: 0° # = 0(0 #) - 0.(0 # #).	· # 4] - # [1 - 1(22;24)] ii = 0
	2 = 0 th 16 anen in 5).
TO A SUN DEPOSIT OF THE WATER THE STATE OF T	9) STREAM NORPHICANT COTENTAL REACTIONS.
で、人。 いみ、リッキャ・2(ル。 いれり)[第(中間) ・ に 第(上籍)]	(中 * M.] 10 나는 * 보는 [(())
$2_{\bullet \bullet} = (\lambda_{\bullet} - i\omega \lambda_{\bullet}) \nabla^{\bullet} \varphi + 2 (\mu_{\bullet} - i\omega \mu_{\sigma}) \left[\left(\frac{1}{12} \frac{g^{\bullet}}{2} + \frac{1}{12} \frac{g^{\bullet}}{2} \right) + \mu_{\bullet}^{\bullet} \frac{g^{\bullet}}{2} \left(\frac{1}{12} \frac{g^{\bullet}}{2} \right) \right]$	
$\mathcal{E}_{ab} = (\lambda_a - i\omega\lambda_a)\nabla^2 \psi + 2(\mu_a - i\omega\mu_a) \left[\frac{2}{3\pi}i(\psi + \frac{2}{3}\frac{\psi}{2}) + \kappa_a^2 \frac{2\psi}{3}\right].$	できっているかなか、これの(第の後の・強)・いる器}}・れ
Zan (Me - (WHV) [] 35 (9 - 32) + 12 38 - 12 375].	200 mm m (を得たの(かのかりのから第一心が多)
Zra = (μο - τωμο)[2 3 3 (φ+ 32) + κ2 32 + κ2 335]	5-0-14 [2 発音 (子(中) 経) - 42 (発 - 子発 - 子を持)]
2-0 = (μο - ιωμο)[2 3 - 1 (· · · · · · · · · · · · · · · · · ·	국- MH(2 33 (4+ 3월) + K! 3월 + 박 3월] , 제 = 씨는 따라
The second secon	•
HESE ARE EAS 3' WITH WE TO WARE AND EN AS GREEKINGS.	24 - " " " " " " " " " " " " " " " " " "

	2		
DI	AL AND SPHERICAL COL	ORDINATES TIME-DEPENDENCE OF THE FO	RM e ^{met} (114, HARMONIC) IN SIX CASES
		 (4) (CA) (B) (M) (CA) (D) (D) (D) (B) (B) (C) (5) (B) (B) (A) (D) 	
10 A 9 AVIA	2β)] ε _{κα} N-6, α, β = N:520US CONSTO	The control of the c	S OF THE INDEPENDENT POTENTIALS . PLANT-STRAIN AMOU BY EQS. B. (1) B) - W. =-2 ^{-0t} V3 b Thus . Plant-STRAIN
Can	N ₁ WHERE. (34+2β-ω ³ , 2β) δη Δ	$\begin{cases} \frac{1}{\cos^{4}} \left[\frac{1}{\log n} \frac{1}{2} \frac{1}{\log n} \frac{1}{2} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \\ \frac{1}{\log n} \left[\frac{1}{\log n} \frac{1}{\log n} \frac{1}{2} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \\ \frac{1}{\log n} \left[\frac{1}{\log n} \frac{1}{\log n} \frac{1}{2} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \\ \frac{1}{\log n} \left[\frac{1}{\log n} \frac{1}{\log n} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \end{cases} $ $\begin{cases} \frac{1}{\log n} \left[\frac{1}{\log n} \frac{1}{\log n} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \\ \frac{1}{\log n} \left[\frac{1}{\log n} \frac{1}{\log n} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \end{cases} $ $\begin{cases} \frac{1}{\log n} \left[\frac{1}{\log n} \frac{1}{\log n} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \\ \frac{1}{\log n} \left[\frac{1}{\log n} \frac{1}{\log n} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \end{cases} $ $\begin{cases} \frac{1}{\log n} \left[\frac{1}{\log n} \frac{1}{\log n} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \\ \frac{1}{\log n} \left[\frac{1}{\log n} \frac{1}{\log n} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \end{cases} $ $\begin{cases} \frac{1}{\log n} \left[\frac{1}{\log n} \frac{1}{\log n} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \end{cases} $ $\begin{cases} \frac{1}{\log n} \left[\frac{1}{\log n} \frac{1}{\log n} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \end{cases} $ $\begin{cases} \frac{1}{\log n} \left[\frac{1}{\log n} \frac{1}{\log n} \frac{1}{\log n} \frac{1}{\log n} \right] \leq \frac{1}{\log n} \end{cases} $ $\begin{cases} \frac{1}{\log n} \left[\frac{1}{\log n} $	$\frac{2}{2} (M_1 + M_2 + M_3 + M_4 +$
STR Crr	TAPLE 1	S) STRAINE SETT CON TOWN : TE - T Str + gin - in · · · · · · · · · · · · · · · · · ·	$\{ \{ (1, 0), (1, 0), (1, 0) \} \}$ These are the same as in table 10.
S T		4) $\frac{D}{dt} = \frac{1}{2} \frac{\partial \phi}{\partial t} + \frac{1}{2} \frac{\partial \phi}{\partial t} = \frac{1}{2} \frac{\partial \phi}{\partial t} + \frac{1}{2} \frac{\partial \phi}{\partial t} = \frac{1}{2} \frac{\partial \phi}{\partial t} + \frac{1}{2} \frac{\partial \phi}{\partial t} = \frac{1}{2} \frac{\partial \phi}{\partial t} + \frac{1}{2} \frac{\partial \phi}{\partial t} = \frac{1}{2} \frac{\partial \phi}{\partial t} + \frac{1}{2} \frac{\partial \phi}{\partial t} = \frac{1}{2$	-0
H & S ER	+ N ₄ + U ₃₁ , ASE GIVEN N 3) AND U _{6.5}	$\begin{array}{c} \mathcal{E}) & \frac{-m_{1}\mathcal{E}(\lambda_{1} - \mathcal{D}(\lambda_{1} - \lambda_{2} + \mathcal{D}(\mu_{1}))) - (\epsilon_{1}(\lambda_{1} - \lambda_{2} + \lambda_{3} + \mathcal{D}(\lambda_{2} - \lambda_{3} + \lambda_{3}))}{\delta_{1}^{2}} \\ \mathcal{E}_{pp} &= \left[\lambda_{0} - i\omega\lambda_{0} \right] \Delta + 2 \left(\mu_{0} - i\omega\mu_{0} \right) \frac{\delta_{1}^{2}}{\delta_{1}^{2}} \\ \mathcal{E}_{eq} &= \left[\lambda_{0} - i\omega\lambda_{0} \right] \Delta + 2 \left(\mu_{0} - i\omega\mu_{0} \right) \left(\frac{1}{2} \frac{\delta_{1}^{2}}{\delta_{2}^{2}} + \frac{i}{4} $	(1) - N ₁ γ γ _e (2) · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·
F G G	A,x]	TO HAVE THESE IN TO HAVE THESE IN TO HAVE THESE IN TERMS OF φ & Ψ WE REPLACE K X X Y Y Y Y Y Y	400 - 1 30 - 1 37 - 37 (1 3%)
	(v·x).		(est a con a con a con
	+ mushing a -0	[[ma . mho] [6, no - 14 - 2 3 3] - [yo ha . m(yo . no)] + 3 - 20, 00 =0	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
201 FO	[020.]-V} -Wu0.	A = 340, 1340, 40 V° = 37 + 12 32 + 12 33 <u>ноте</u> : «1 = pw*/(µe-шµe) гоям 22) 18 нот AS USE FUL.	A * () · · · · · · · · · · · · · · · · · ·
	A)]4 ='0		
	(本)」;····································	6) 47+600 10000000000000000000000000000000000	(Cherry lense 2 million of 3 (135)) + N
15 4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- N (- 1	تهوه - [كو - نسكه] براي + 2 إبد - نسابه) [أي يُهُمُ + أَهُ يُؤُمُ + أَهُ يُؤُمُّ - بدؤ قُرْ لَهُ يُؤُمُّ أَ كيد - [كو - نسكه] براي	200 M.(-2000 + 2 me[1 38 + 6 38 - m2 € (+ 36)) + M. 200 M. (-2000) + M 200 - 0 . 20 - 0
Craw	% -≒ % }]	Ĉ ₇₈ = Ĉ ₆₈ =Ο	Tro = 40 M. (1 \$ 10 (8) - 12 (
7 ₁₀ 4 10 M	Me whose	た。- [ルー・シャル](2 元(年) - ル。(元 - 十分 - 九 元)]	M with the country with the second with the country wi
rg.	(20 - 20 - 10 / 10) }	TO MAKE THERE IN THRMS OF GAID, WE MEMAKE HER BY Up 9) HELMHOLTE'S EGANTIONS FOR CLAURE AND WELL OF TEXAUTIMES:	My - WE TWO IS I TO HAVE THESE WITERMS OF GINED &
30	80 € 7.50 = 0	Ü(♥²+n²)♥ =0	4) har to the company for the Albanda in the Company of the company

O S S W

A + 1

IN SIX CASES OF INTEREST. (SEE PEMARA a) BELOW). LOSS OF THE THEREST. (SEE PEMARA a) BELOW). LONG CYCIN, END. HERE THERE TO THE METAL THE MATTER THE MATTER THE METAL THE MET	OR. Con (A A A A A A A A A
LONG CYCITY, EAST, HERE THERE TO THE TO THE TOTAL THE	OR. $\begin{cases} \lambda_{10} = 0, & 0 \\ \lambda_{10} = 0, & 0 \\ \lambda_{10} = 0, & 0 \\ \lambda_{10} = 0, & 0 \end{cases}$ $\begin{cases} \lambda_{10} = 0, & 0 \\ \lambda_{10} = 0, & 0 \\ \lambda_{10} = 0, & 0 \end{cases}$ $\begin{cases} \lambda_{10} = \left[\lambda_{10} = \lambda_{10}\right] \\ \lambda_{10} = \left[\lambda_{10} = \lambda_{10}\right] \\ \lambda_{10} = \left[\lambda_{10} = \lambda_{10}\right] \end{cases}$
The state of the problem of the pro	$\begin{array}{c} \langle V_{1}, V_{2}, O_{1}, O_{2}, A \rangle \\ \langle A_{1}, A_{2}, V_{3}, O_{1}, A \rangle \\ \langle A_{2}, A_{2}, V_{3}, O_{2}, A \rangle \\ \langle A_{2}, A_{2}, A_{3}, A \rangle \\ \langle A_{2}, A_{3}, A_{4}, A_{2}, A \rangle \\ \langle A_{2}, A_{3}, A_{4}, A_{4}, A_{4} \rangle \\ \langle A_{2}, A_{3}, A_{4}, A_{4}, A_{4}, A_{4} \rangle \\ \langle A_{2}, A_{3}, A_{4}, A_{4}, A_{4}, A_{4}, A_{4}, A_{4}, A_{4} \rangle \\ \langle A_{2}, A_{3}, A_{4}, A$
$\frac{c_{ij} + (c_{ij} + c_{ij}) + c_{ij} + c_{ij}}{c_{ij} + (c_{ij} + c_{ij})} = \frac{c_{ij} + c_{ij} + c_{ij}}{c_{ij} + (c_{ij} + c_{ij})} = \frac{c_{ij} + c_{ij} + c_{ij}}{c_{ij} + c_{ij}} = \frac{c_{ij} + c_{ij} + c_{ij}}{c_{ij}} = \frac{c_{ij} + c_{ij} + c_{ij}}{c_{ij}} = \frac{c_{ij} + c_{ij} + c_{ij}}{c_{ij}} = \frac{c_{ij} + c_{ij}}{c_{ij}} = \frac{c_{ij}}{c_{ij}} = \frac{c_{ij}}{c_{$	OR. $\begin{cases} C_{10} = \{\lambda_{11} - \lambda_{12}\} \\ C_{00} = \{\lambda_{11} - \lambda_{12}\} \\ \lambda_{10} = \{\lambda_{21} - \lambda_{12}\} \\ \lambda_{20} = \{\lambda_{21} - \lambda_{22}\} \\ \lambda_{21} = \{\lambda_{21} - \lambda_{22}\} \\ \lambda_{22} =$
$\left\{ \mathcal{E}_{\rho\rho} = (\lambda_{e} - i\omega\lambda_{v}) \Delta + 2(\mu_{e} - i\omega\mu_{n}) \in_{\rho\rho} \right\} = \left\{ \mathcal{E}_{\rho\rho} = 2(\mu_{e} - i\omega\mu_{v}) \in_{\rho\rho} \right\}.$	これがた 重 はいさ 代外 エ
	ANE IN C - III-
$\begin{cases} u_{0} = \frac{1}{3\pi} \left[\varphi + \frac{1}{3\pi} (r \psi) \right] + K_{2}^{2} r \psi = \frac{1}{8\pi} \left[\varphi + \frac{1}{3\pi} (r \psi) \right] - (r \nabla^{2} \psi) \\ (u_{0} = \frac{1}{\pi} \frac{1}{36} \left[\varphi + \frac{1}{3\pi} (r \psi) \right] + \frac{1}{36\pi} \frac{1}{36} \left[\varphi + \frac{1}{3\pi} (r \psi) \right] + \frac{1}{36\pi} \left[\varphi^{2} X \right) \\ (u_{0} = \frac{1}{\pi} \frac{1}{36} \left[\varphi + \frac{1}{3\pi} (r \psi) \right] + \frac{1}{36\pi} \left[\varphi + \frac{1}{3\pi} (r \psi) \right] + \frac{1}{36\pi} (r \psi) \right] + \frac{1}{36\pi} (r \psi) \right] + \frac{1}{36\pi} (r \psi) $	ing a Spilitar Spilit M
ATIONS: SEAR MILEARN, Sy [A-100x] Sy + 2 (He-1004) Sy .	τος = [ig - 12 ig] (τος = [ig - 12 ig]
· · · · · · · · · · · · · · · · · · ·	Report of a pro-
Vodo (1 ·	WHERE, CO
(1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	43) <u>174622 - 1744</u> C _{pp} = - [3 ₀ - 1433 ₀
	کهه ۵۰۰ (کید ، سابل) کهه ۵۰۰ ، کاره کاره ۵۰۰ (لایو - ۱۰۰ لای)
((ロール) (ロール) (ロ	me will see held

	No. 3 (9)	N ATEREST Fin - TABLE.
	The second of t	$\frac{1}{1}\frac{1}\frac$
ок.	$\begin{cases} \frac{1}{(1+c_1)^2 + \cdots + \frac{1}{c_1}(1+c_1)} \frac{1}{(1+c_1)^2 + \cdots + \frac{1}{c_1}(1+c_1)} \frac{1}{(1+c_1)^2 + \cdots + \frac{1}{c_1}(1+c_1)} \\ \frac{1}{(1+c_1)^2 + \cdots + \frac{1}{c_1}(1+c_1)^2 + \cdots + $	$E = \mu \cdot (1 + \mu) = \frac{3k\mu}{3k + \mu} = 3k(1 + \mu)$ $E = \mu \cdot (1 + \mu) = \frac{3k\mu}{3k + \mu} = 3k(1 + \mu)$ $E = \mu \cdot (1 + \mu) = \frac{3k\mu}{3k + \mu} = 3k(1 + \mu)$ $E = \frac{E}{3(1 + \mu)} = \frac{E}{3(1 + \mu)} = \frac{E}{3(1 + \mu)}$ $E = \frac{E}{3(1 + \mu)} = \frac{E}{3(1 + \mu)} = \frac{E}{3(1 + \mu)}$ $E = \frac{E}{3(1 + \mu)} = \frac{E}$
BEE ARE SAME / C TABLET	(*************************************	$\frac{\lambda}{\mu} = \frac{1}{12} , \frac{\lambda}{2\mu} = \frac{1}{12\mu} , \frac{\lambda}{\mu} = \frac{\nu}{1-2\nu} , \frac{\lambda}{\lambda + 2\mu} = \frac{\nu}{1-2\nu} , \frac{\lambda}{\lambda + 2\mu} = \frac{\nu}{1-2\nu} , \frac{\lambda}{\lambda + \mu} = 2\nu ,$
	Apr 強いない、 11 mm 1	F WE DEFINE: $T = \frac{1}{1 \cdot 2H} = \frac{E}{1 - D^2}$, $H = \frac{E}{2(1 + D)}$ F WE DEFINE: $T = \frac{1}{1 \cdot 2H} = \frac{E}{1 - D^2}$, THEN, $-H = \frac{1}{(1 \cdot D)} = \frac{H}{(1 \cdot 2H)} = \frac{A_1 H}{(1 \cdot D)} = \frac{A_2 H}{(1 \cdot 2H)}$ $-2H = \frac{E}{1 \cdot 2H} = \frac{4H(1 \cdot 2H)}{(1 \cdot 2H)} = \frac{1}{1 \cdot 2H} = \frac{2(A_2 + H)}{A_2 \cdot 2H}$
ana 3\$° 'S.	Cope (in 1 (1) (1) 1 (1) (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	A 19 USEFFIC HERAOSE REPLACING A BY A IN THE PLANE-STRAIN EQUATIONS, WE GET THE PLANE STRESS EQUATIONS, CONVERSELY, FIRE HERAGE THE EARL OF PLANE STRESS BY E/(1-42) AND DEFENDENCE OF PLANE STRAIN EQUATIONS.
	260= 23= (23= (23= (24)) + 42) (60= 60= 60= 60= 60= 60= 60= 60= 60= 60=	- 25 50 - 25 50 - 25 50 mm - 25 50 50 50 50 50 50 50 50 50 50 50 50 50
) (Q. 5),	THE WILL SEE BELOW THAT IT SHOT ON ENDENT TO HAVE THESE IS THE MADE OF SHOT OF A WILL BE TO SHOE THE SECOND	- 10 mm - 15 mm - 1 mm
30	いまれて、	(1 min fig 1876 fl mins foll - 1976 - 9 fl 19 f
ikirisek adalasiksidasi	ch = - (ye more) who is the committee of the follow) and follow). who is the committee of	WITHOU SEE TALKS THE MODELY SEE TO ME A WITHOUT AND THE SPREATE AND THE SEEL THE STREET AND THE SPREATERS AND THE SPREAT
	200 - [20-1026] 120 - 2 (10-1011) [1/2 3/2 - 1/2 3/2 3/2 - 1/2 3/2	TONOTIONS OF THE THE STATE OF T
	The wast see before that I are the continuent to have there are the continuent to have there are the continuent to have the continuent to	10 × 102 × 10 × 10 × 10 × 10 × 10 × 10 ×
. Y	Anna den et a anna et a	- # 18 - 18 14 - 14 19 4 - 18 18 - 4 24 - 5 24 1

..) (V;+N;) \$ +0 & \$ \$ \$ +0

O W. + HA SID + O

4

$2 \in_{ra} = 2 \frac{3^2}{6r6z} (\varphi + \frac{3\psi}{5z}) + \kappa_2^2 \frac{3\psi}{6r} + \frac{\kappa_2^3}{r} \frac{3^2 \chi}{500z}$ = $2 \frac{3^2 \psi}{0r0z}$	$\begin{array}{c} +\frac{1}{4} \frac{3}{86} \left[2 \frac{\partial^{2} \mathcal{V}}{\partial x^{2}} - \nabla^{2} \mathcal{V} \right] + \frac{\partial^{2}}{\partial r \partial x} \left(\nabla^{2} \mathcal{X} \right) \\ + \frac{\partial}{\partial r} \left[2 \frac{\partial^{2} \mathcal{V}}{\partial x^{2}} - \nabla^{2} \mathcal{V} \right] - \frac{1}{r} \frac{\partial^{2}}{\partial \theta \partial x} \left(\nabla^{2} \mathcal{X} \right) \\ + \frac{\partial}{\partial r} \left[2 \frac{\partial^{2} \mathcal{V}}{\partial x^{2}} - \nabla^{2} \mathcal{V} \right] - \frac{1}{r} \frac{\partial^{2}}{\partial \theta \partial x} \left(\nabla^{2} \mathcal{X} \right) \\ + \frac{\partial}{\partial \theta} \left[\frac{\partial^{2} \mathcal{V}}{\partial x^{2}} - \frac{1}{r} \frac{\partial^{2} \mathcal{V}}{\partial x^{2}} \right] + \left[\frac{\partial^{2}}{\partial x^{2}} - \frac{1}{r} \frac{\partial^{2}}{\partial x^{2}} - \frac{1}{r} \frac{\partial^{2}}{\partial x^{2}} \right] \left(\nabla^{2} \mathcal{X} \right) . \end{array}$	260 ₀
7) FIGURE QUATIONS: i): $\nabla^2 \vec{u} + \left[1 + \frac{\lambda_e - i\omega \lambda_V}{\mu_e - i\omega \mu_V}\right] \nabla (\vec{\nabla} \cdot \vec{u}) + \kappa_2^2 \vec{u} = 0$ where, $\kappa_2^4 = 9\omega^2 / (\mu_e - i\omega \mu_V)$. This Eq. can be opened up by means of $\nabla^2 \vec{u} = \left[\nabla^2 u_+ \cdot \frac{u_r}{r_1} - \frac{2}{r_2} \frac{3u_0}{3\theta}\right] \hat{\epsilon}_r + \left[\nabla^2 u_0 - \frac{u_1}{r_2} + \frac{2}{r_3} \frac{3u_0}{3\theta}\right] \hat{\epsilon}_0 + \left[\nabla^2 u_1\right] \hat{\epsilon}_0$, And $\nabla^2 = \frac{3^2}{8r^2} + \frac{1}{r_3} \frac{3}{3r_3} + \frac{1}{r_3} \frac{3^2}{8\theta^2} + \frac{3^2}{3z^3}$. The gradient operator 4 the dilatation Δ are given above. ii): $-\nabla x(\nabla x \vec{u}) + \left[2 + \frac{\lambda_e - i\omega \lambda_V}{\mu_e - i\omega \mu_V}\right] \vec{\nabla}(\vec{\nabla} \cdot \vec{u}) + \kappa_2^2 \vec{u} = 0$ NOTE: $\nabla^2 \vec{u} = \vec{\nabla}(\vec{\nabla} \cdot \vec{u}) - \vec{\nabla}_x(\vec{\nabla} x \vec{u})$.	7) FIELD EQUATIONS: i): $(1 - \frac{126}{129})(\nabla^2\vec{u} + \frac{1}{24}\frac{1}{4}e^{\frac{1}{1}}\vec{v} + \frac{1}{24}\vec{v}(\vec{v} \cdot \vec{u}) $	A = 31 NOTE :
8) STRESS - NOW PENCENT POTENTIAL RELATIONS: $ \mathcal{C}_{H^{\alpha}} \left(\lambda_{\alpha} \cdot i\omega \lambda_{\nu} \right) \nabla^{2} \varphi + 2 \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[\frac{\partial^{2}}{\partial r^{2}} (\varphi + \frac{\partial \psi}{\partial \mu}) + \kappa_{2}^{2} \frac{\partial}{\partial r} \left(\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta} \right) \right] \\ \mathcal{C}_{\theta 0} = \left(\lambda_{\alpha} \cdot i\omega \lambda_{\nu} \right) \nabla^{2} \varphi + 2 \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[\left(\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \frac{1}{r^{2}} \frac{\partial}{\partial r} \right) \left(\varphi + \frac{\partial \psi}{\partial \mu} \right) - \kappa_{2}^{2} \frac{\partial}{\partial r} \left(\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta} \right) \right] \\ \mathcal{C}_{\theta 2} = \left(\lambda_{\alpha} \cdot i\omega \lambda_{\nu} \right) \nabla^{2} \varphi + 2 \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[\frac{\partial^{2}}{\partial z^{2}} (\varphi + \frac{\partial \psi}{\partial z}) + \kappa_{1}^{2} \frac{\partial^{2}}{\partial z^{2}} \right] \\ \mathcal{C}_{\theta 2} = \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[\frac{\partial^{2}}{\partial z^{2}} \left(\varphi + \frac{\partial \psi}{\partial z} \right) + \kappa_{1}^{2} \frac{\partial^{2}}{\partial r^{2}} \right] + \kappa_{1}^{2} \frac{\partial^{2}}{\partial r^{2}} \right] \\ \mathcal{C}_{\theta 3} = \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[2 \frac{\partial^{2}}{\partial r^{2} \partial z} \left(\varphi + \frac{\partial \psi}{\partial z} \right) + \kappa_{2}^{2} \frac{\partial^{2}}{\partial r} + \kappa_{1}^{2} \frac{\partial^{2}}{\partial r^{2}} \right] \right] \\ \mathcal{C}_{\theta 3} = \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[2 \frac{\partial^{2}}{\partial r^{2} \partial z} \left(\varphi + \frac{\partial \psi}{\partial z} \right) + \kappa_{2}^{2} \frac{\partial^{2}}{\partial r} + \kappa_{1}^{2} \frac{\partial^{2}}{\partial r^{2}} \right] \right] \\ \mathcal{C}_{\theta 4} = \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[2 \frac{\partial^{2}}{\partial r^{2} \partial z} \left(\varphi + \frac{\partial \psi}{\partial z} \right) + \kappa_{2}^{2} \frac{\partial^{2}}{\partial r} + \kappa_{1}^{2} \frac{\partial^{2}}{\partial r^{2}} \right] \right] \\ \mathcal{C}_{\theta 4} = \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[2 \frac{\partial^{2}}{\partial r^{2} \partial z} \left(\varphi + \frac{\partial \psi}{\partial z} \right) + \kappa_{2}^{2} \frac{\partial^{2}}{\partial r} + \kappa_{1}^{2} \frac{\partial^{2}}{\partial r^{2}} \right] \right] \\ \mathcal{C}_{\theta 5} = \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[2 \frac{\partial^{2}}{\partial r^{2} \partial z} \left(\varphi + \frac{\partial \psi}{\partial z} \right) + \kappa_{2}^{2} \frac{\partial^{2}}{\partial r^{2}} + \kappa_{2}^{2} \frac{\partial^{2}}{\partial r^{2}} \right] \\ \mathcal{C}_{\theta 5} = \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[2 \frac{\partial^{2}}{\partial r^{2} \partial z} \left(\varphi + \frac{\partial \psi}{\partial z} \right) + \kappa_{2}^{2} \frac{\partial^{2}}{\partial r^{2}} \right] \\ \mathcal{C}_{\theta 5} = \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[2 \frac{\partial^{2}}{\partial r^{2} \partial z} \left(\varphi + \frac{\partial \psi}{\partial z} \right) + \kappa_{2}^{2} \frac{\partial^{2}}{\partial r^{2}} \right] \\ \mathcal{C}_{\theta 5} = \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[2 \frac{\partial^{2}}{\partial r^{2} \partial z} \left(\varphi + \frac{\partial \psi}{\partial z} \right) + \kappa_{2}^{2} \frac{\partial^{2}}{\partial r^{2}} \right] \\ \mathcal{C}_{\theta 5} = \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[2 \frac{\partial^{2}}{\partial r^{2} \partial z} \left(\varphi + \frac{\partial \psi}{\partial z} \right) + \kappa_{2}^{2} \frac{\partial^{2}}{\partial r^{2}} \right] \\ \mathcal{C}_{\theta 5} = \left(\mu_{\alpha} \cdot i\omega \mu_{\nu} \right) \left[2 \frac{\partial^{2}}{\partial r^{2} \partial z} \left(\varphi + \frac{\partial \psi}{\partial z} \right) + \kappa_{2}^{2$	b) $\frac{1}{2} = \frac{1}{2} \frac{1}{2}$	2) 5"KES 24[
() (V2+ 12) (V=0 (V++2) (V=0 (V++2) (V=0 (V++2) (V=0 (V++2) (V+2)	3) $\frac{1}{1} \frac{1}{1} \frac$) HELMI () (V
TO THE WHOLE RESIDENCE TO A CORRECT CONTINUE OF THE REAL RESIDENCE OF THE		WHERE
	THE COUNTED FOR BY THE FORMULE AROVE IN 9).	TO STANDER OF THE STANDER OF A

12) OWNARMS:

(I) THE PROSECT OF THIS TABLE, AND THAT IS NOT IT HAS ORGANIZED AS HAVIN ABOVE; IS THAT IT WE INTRODUCE INDEPENDENT SCALAR POTENT BATISFIED IN EACH ONE IN THE CASES CONSIDERLY, AND THE DISPLACEMENT AND OTHERS FIELD COMPONENTS ARE GIVEN IN TERMS OF THE PROBLEMS, AND WHICH IS COMMON IN OTHER DISCIPLINES (THE ELECTRODUNARMIN,), IS ARMHENTLY NOVEL IN VISCOSLASTICITY, AND WITH ELECTRODUNARMIN, THEORY WILL QUE HIN NOTICE THE ANALOGY OF THE PROPERTY OF THIS TABLE WITH THAT OF ELECTROMANDER TO IT IS EVIDENT THAT IN ALL THE FARLS IN THE PROPERTY OF DISPLACEMENT OF DYNAMICAL ELASTICITY, IN THE ABSENCE YOUR CYLHODICAL COORDS THE FARLS OF THE OF IT OF OTHER PROPERTY ABOUT THE REPORTS OF CASES OF SAME STRAIN RESIDENCE OF THE THE OF IT ABOVE OF THE PROPERTY ABOUT THE READS, CAN IS USENAND FROM DEED BY.

(B) IN THE CASE OF PLANE-STRAIN (ON ITABLE) IN THE TWO IS SCHOOL CONSTANTS TO DAK, OCCURS WHEN IT BETTER YOUR REPORTS OF THAT IS AN AMEN'T SEND OF THAT IS ON THE ANALYSON OF THE BELLEVISCOSITY IS READ OF THAT IN THE THAT IS OF THE ANALYSON OF THE AMEN'T SCOSITY IS READ OF THAT IN THE THAT IS OF THE AMEN'T SCOSITY IS READ OF THAT IN THE THAT IS OF THE AMEN'T SCOSITY IS READ OF THAT IS ON THE AMEN'T THE BELLEVISCOSITY IS READ OF THAT IN THE THAT IS OF THE AMEN'T THE BELLEVISCOSITY IS READ OF THAT IN THE THAT IS OF THE AMEN'T THE BELLEVISCOSITY IS READ OF THAT IN THE THAT IS OF THE AMEN'T THE BELLEVISCOSITY IS READ OF THAT IN THE THAT IS OF THE AMEN THE BELLEVISCOSITY IS READ OF THAT IS OF THE THAT IN THE THAT IS OF THAT IS OF THE THAT IS OF THE THAT IS OF THE THAT IS OF THAT IS OF THE THAT IS OF THAT IS OF THE THAT IS OF THAT IS OF

2

2500 - 200 18 - 2008 18 - 200 38 - 2008 18 - 2008 18 - 2008 18 - 10 [+ 36 - 40] - 2008 18 - 10 [+ 36 - 40] - 2008 18 - 10 [+ 36 - 40] - 2008 18 - 2008 18 - 10 [+ 36 - 40] - 2008 18 - 2008	26m= 2 gr [+ gg (4+gr (+W))]++
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WE WILL SEE BELOW THAT IT IS NO TERMS OF \$4 \$400 - 300 DINGE 14
The state of the s	3) FIELD EQUATIONS: (a) $\left[\nabla_{r_0}^2 u_r - \frac{2}{2} \frac{u_r}{u_r} - \frac{2}{r_0} \frac{3u_r}{2} - \frac{2}{2} \frac{u_r}{u_r} - \frac{2}{2} \frac{3u_r}{u_r} - \frac{2}{2} \frac{3u_r}{u_r} \right]$
THE CAN BE CHERED UP BY MERCH OF. VA - A C	$\left[\nabla_{0}^{2} u_{0} - \frac{2}{2} \frac{\partial u}{\partial \theta} - \frac{u_{0}}{r^{2} \ln^{2} \theta}\right] + \left[1 + \frac{\lambda_{0}}{\mu_{0}^{2}} \right]$
(1) - (1) -	WHERE. $\nabla_{r_0}^2 = \frac{3^2}{8r^2} + \frac{2}{7}\frac{3}{8r} + \frac{1}{78}$
* [V'40 - 14] 3 + - 10 3 + -	$\Delta = \frac{3u}{3r} + 2u + \frac{1}{r} \frac{3u}{3r}$
40) - で、(で、こ) + (2 + ハ・ルルド) ラ(で、む) + Kをは = 0 WHERE KE IS AS ABOVE.	κ2° = ρω2/(μe-i
	FORM (2) IS NOT AS USEFUL.
き) 574055- NOCHEROLINE FOTENTIAL RELATIONS: でルー・(de tours)では、ことに、He (a He)(が(中央での)) + He 発(の)	8) STRESS -INCEPENDENT POTENTI
<u> </u>	$c_{pp} = -[\lambda_e - i\omega\lambda_p] \kappa_e^2 \varphi + 2(\mu_e - i\omega\mu_e)$
(+ \frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ξ = -[λ - ιωλ] κ 2 φ + 2 (μ - ιωμ
$\sum_{k=1}^{\infty} (1-k) (k+2) (k+2) (k+2) (k+2) (k+3) (k+3$	C++=-[λ (ωλυ] κ.*φ + 2(με- ιωμ
$\mathcal{L}_{00} = (\mathcal{H}_{0} - \omega_{0} \mathcal{H}_{0}) \left[\frac{2}{r^{2}} \frac{3}{38} \left(\frac{1}{r^{2}} \frac{3}{38} \left(\frac{1}{r^{2}} \frac{3}{37} (r \varphi) \right) - \mathcal{H}_{2}^{2} \left(\frac{1}{r^{2}} \frac{3^{2}\chi}{29} - \frac{1}{r^{2}} \frac{3\chi}{29} - \frac{1}{r^{2}} \frac{3^{2}\chi}{29} \right) \right]$	ε _φ =0 , ε _{rφ} =0 ,
$\zeta_{r_0} = (u_0 - i\omega \mu_0) \left[\frac{2}{\omega r_0} \frac{1}{3r} (\frac{1}{r} \frac{1}{3r}) (\varphi + \frac{3}{3r} (r \psi)) + \kappa_z^2 \left(\frac{1}{\sin \theta} \frac{3\psi}{3\phi} - \frac{3}{3\theta} (\frac{3\chi}{3r} - \frac{\chi}{r}) \right) \right]$	2- = [με-ιωμυ][2 3- (+ 30 (+ 30
Cros (Ha - τω Ha) [2 3 (+ 3) φ + 3 (r ψ)) + K2 (30 - 1 30 + 10 37 50)] THESE ARE EQS.(6) HONNE TOTED (470 2)	WE WILL SEE BELOW THAT IT IS NOT TERMS OF DE W SINCE W
?) HELMHOLTE'U EAS, FOR THE SCALAR AND VECTOR POTENTIALS φ AND $\widehat{\psi}$: () $(\nabla^2 + \kappa_1^2) \varphi : 0$ $(\nabla^2 + \kappa_1^2) \widehat{\psi} = 0$ & $\widehat{\nabla} \cdot \widehat{\psi} = 0$	9) HELMHOLTZ'S EQS. FOR THE SC. 4) $(\nabla_x^2 + \kappa_x^2)\phi = 0$
WHERE, No 12 = 12 1 - WM) , No 2 = 23 (1 - WN) , M = 20 - 24 , No 40 , We - 10 - 24 , Co = 40 .	WHERE, $K_1^3 = \frac{\omega^2}{C_1^2(1-i\omega M)}$, $K_2^2 = \frac{\omega}{U_0^2(1-i\omega M)}$
THESE ARE HELMHOLTZ EQS. WITH COMPLEX PROPAGATION CONSTANTS, THE VECTOR EQ. IS FURTHER SUBJECTED TO THE SOLENOIDAL (GAUGE) CONDITION SHOWN.	AND, CLE (LET LUE)/P, CLE ME/S THESE ARE HELMHOLTZ EQS. WITH SINCE, WE WY (r. 8) E. AND. VE (TURNS OUT THAT THE EQ FOR VE
10) HE MADERATE ELLATIONS FOR THE INDEPENDENT SCALAR POTENTIALS:	10) HELMHOLTETS BIAG, FOR (NOBRE)
$(\nabla^2 + \kappa_1^2) \phi = 0 (\nabla^2 + \kappa_2^2) \psi = 0 (\nabla^2 + \kappa_2^2) \mathcal{X}(r_1 \theta, \phi) = 0 .$	$(V_0^2 + K_1^2) \phi = 0$, (i) $(V_0^2 + K_1^2) \phi = 0$ WHERE $K_1^2 + K_2^2 + K_3^2 + K_4^2 + K_5^2 + K_6^2 + $
WHERE THE COMPLEX \mathcal{A}_{i}^{2} & \mathcal{A}_{i}^{2} are as given in 9) and \mathcal{D}^{2} as given in 7).	IF WE SET $\psi_0 = -\frac{3\psi}{3}$ in the Last (This is why it is much! convenien terms of ψ rather than ψ_1 .
11) SOUR NOTICE SOLUTION OF THE VESTOR HELMINISTA ELS, IN GENERAL SPHERICAL COORDINATES: THE SOUR NOTICE SOLUTION OF (THE RESOLUTION OF TRESOLUTION OF TRESO	11) SOLENOICAL SOLDTION OF VECTOR THE SOLENOIDAL SOLDTION OF (M
	Ψ = (V, ψ)×ñ = Ψ×(ñψ(r, OR IN COMPONENT FORM, Ψ, =0
NOTE THAT Ψ IS NOT $\{\Psi\}$. DRENING SOLUTION (A) INTO ITS COMPONENTS WE FIND.	(NOTE THAT 회IS NOT 회) PROVIDER SUBSTITUTING EQUUTION (A) INTO
$\psi = \frac{3^{2}}{3r^{2}}(r\chi) + r\kappa_{2}^{2}\chi = -\frac{1}{r}\frac{V\chi}{3\Psi^{2}} - \frac{c_{1}c_{2}}{2}\frac{3\chi}{r} - \frac{1}{2}\frac{3^{2}\chi}{3r^{2}},$ $\psi_{0} = \frac{1}{\sin\theta}\frac{3\psi}{\delta\phi} + \frac{3\chi}{3r^{2}} + \frac{3^{2}\chi}{\sin\theta}\frac{3}{2}\frac{\chi}{r},$ $\psi_{0} = \frac{1}{\sin\theta}\frac{3\psi}{\delta\phi} + \frac{3\chi}{3r^{2}} + \frac{3^{2}\chi}{\sin\theta}\frac{3}{2}\frac{\chi}{r},$ $\psi_{0} = \frac{1}{\sin\theta}\frac{3\psi}{\delta\phi} + \frac{3\chi}{3r^{2}} + \frac{3^{2}\chi}{\sin\theta}\frac{3}{2}\frac{\chi}{r},$ $\psi_{0} = \frac{1}{\sin\theta}\frac{3\psi}{\delta\phi} + \frac{3\chi}{3r^{2}} + \frac{3\chi}{\sin\theta}\frac{3}{2}\frac{\chi}{r},$ $\psi_{0} = \frac{1}{\sin\theta}\frac{3\psi}{\delta\phi} + \frac{3\chi}{3r^{2}} + \frac{3\chi}{\sin\theta}\frac{3}{2}\frac{\chi}{r},$ $\psi_{0} = \frac{1}{\sin\theta}\frac{3\psi}{\delta\phi} + \frac{3\chi}{\sin\theta}\frac{3\psi}{\delta\phi} + 3\chi$	THE TOP TO THE ABOUT OF THE ABOUT OF THE ABOUT ON THE ABOUT OF THE ABOUT OF THE SOLUTION THE SOL
USING THE AUXILIARY RELATIONS OF [OU) AT] = OU+ HETH + O(OU-F) AND OX (FX) = (OX) X WE CAN NOW SUBSTITUTE SOLUTION (A) INTO I = OU+ OF I TO OBTAIN I = O[O+ OF I TO OBTAIN I = O [O+ OF I TO OBTAIN I	EQ. WITH A REAL PROPAGATION CO SATISFIES THE SCALAR HELMHOL
AS WE HAD IN EQS. 4. IN THE ABSENCE OF VISCOSITY (10, M=N=0, W+, ELASTICITY) EQ. (A) ABOVE IS THE SOLENOIDAL SOLUTION OF THE VECTOR HELMHOLTZ EQ. NOW WITH A REAL RATHER THAN COMPLEX PROPAGATION CONSTANT & 2 = 12/C PROVIDED WAX SATISFY SCALAR HELMHOLTZ EQS.	GATION CONSTANT. NOTE THAT T
WITH THE SAME REAL PROPAGATION CONSTANT \$2.	IS POSSIBLE FOR KE AS GENERAL
	+ 1 rasing h(4) WHERE f. g. h. ARE CO
2) REMARKS a). b). c) OF THE CYLINDRICAL CASES TO THE LEFT, ALSO HOLD HERE.	12) REMARKS a), b) & e) of the cyl
(1) NOTE AGAIN THAT IN SPITE OF THE APPARENT GENERALITY OF THE SOLENOIDAL SOLUTION 11) A) ABOVE WITH ITS VECTOR OPERATORS, IT 18 ONLY VALID IN SPHERICAL COORDINATES. NOTE FURTHER THAT	AC) THE MAXWELL MODEL IN SPHERIO
THE TWO PARTS (i.e., curl $\overrightarrow{r}\psi$) and curl curl $\overrightarrow{r}\chi$) are different even when $\psi = \chi$. Actually, they are perfectious as well $\psi = \chi$.	AS AN EXERCISE TO THE READER. AND THIS ENTIRE CHART, WHICH IS VA
THERE IS NO WAY TO HAVE A PLANE-STRAIN OR PLANE-STRESS SITUATION IN SPHERICAL COORDS. THE CLOSEST WE CAN GET TO THEM IS THE AXIALLY-SYMMETRIC CASE G) TO THE RIGHT.	DENCE OF THE FORM Q" HOT, 'S A F COMPANION TABLE 1" VALID FOR A (G. GAUNAURD , 1975).

,

The state of the s Panto Pet 2347 (N- 37 DIVERSENCE: \$ (0.5) + (30 + 2 30 - 2 1 + 1 300 こないもつの・世選 5 Cy - 540 350 - 5550 40 - 1500 5500 - 1500 580 } C. THE REPORT OF THE PARTY OF THE PARTY OF THE Line of the state THE CANAL TO SEE STATE OF CHAMPINESS SPORTS 10 - 10 - 12 36 - 12 36 - 10 W - 10 10 + 12 10 38 + 4 E.G. 5%. The second of th · 大學 等 <u> マレン といれて</u>: ヴェ (ヴェウ) - [-デージンチ - 1000 300 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 100 The State of the S 3 357 4.大学、学、遗嘱: 美级。 FURM REL RINGT AND TOTAL - न्युंध 😭 र स्थानिक रे र SOLUTION OF STALAR HELMHOLTZ EQ. $(\nabla^2 + k^2) \phi(r, \theta, \phi) = 0$. $(r, \theta, \phi) = \begin{cases} r^{12} J_{n+n}(kr) \\ r^{n} V_{n+2}(kr) \end{cases} \begin{cases} 0.56 \end{cases} \begin{cases} 0.56 \\ 0.56 \end{cases} \begin{cases} 0.56 \\ 0.56 \end{cases}$ THE SHAPP OF THE PROPERTY AND THE PROPERTY AND THE SHAPP OF THE PROPERTY AND THE SHAPP OF 1. That 45, 410No. THE PROTIONS ARE PROPORTIONAL TO THE SPHERICAL BESSEL TUNCTIONS I.E. SALE) = \(\frac{7}{22} J_{n+2}(a), \quad y_n(a) = \(\frac{7}{22} Y_{n+1}(a) \). Com a record record of the recorder way to give the first of the first of the Carried and the result of the first the second of the seco 1) CHONDHILAL COORDINATES OFFRATORS! こで 60 2 ENCE: ☆☆ - 赫 - 新 + # 53 + 5 か · APLACIAN: V24. 39+139+138+34 . Commence of the second of the ଭଳି ଭାରତ ପ୍ରତିକ୍ର ପାଇଁ ମଧ୍ୟର । ମଧ୍ୟ ଅଧିକ ପ୍ରଧାନକ ଅକ୍ୟାନ୍ତ ଅଧିକରେ ଅଧିକରେ ଅଧିକରେ । ଅନୁନୟର ପ୍ରତ୍ୟ ଭାରତ୍ୟ ଓ ଏହି । ୧୯୯୭ - ୧୯୯୭ - ୧୯୯୭ - ୧୯୯୭ - ୧୯୯୭ - ୧୯୯୭ · [\$\frac{1}{2}\frac{1}{2} \cdot + \frac{1}{2}\frac{1}{2} \cd LECTOR LAPLACIAN: DO D = [DOW - H - B BH) & + · 102 14 - 沒 + 是 强 16. + [0" W.] 5. CURL OF CURL: V = (V = W) = (+ 360) + + 360 - + 360 - 840 + المراجعة ال ଅଳୟରେ ନଳ୍ପଳପ୍ଲୟ ଓ ଅଞ୍ଚିତ ହ - 3, 1/2 E+ [= 3, 0 - 3, 1/2 - 3, 1/2 - 4 3 1/2 + 1/5 + 1/5 1/2 - 1/3 3/2] 50+ +[30 + - 30 + + 32 - + 32 - + 30 1] €. SOLUTION OF STALAR HELMHOLTZ' EQ. (T2 + 42) \(\phi(r, 0, 2) = 0). 5. V. C. P. S. W. S. V. 1/2 - 1/2 U = C φ(r, θ, λ) = { Σ,λr) } { ε [*] { cos nθ } { γ,(λr) } { e r * } { sin nθ } WHERE AS A RETARE SOMPLEN GUANTSTEE GIVEN ABOVE HIS F WE SET (L) = - Bas (N Fra Last E.G. Gruen N 3) NEGET (D) (L) This (S which is S T) = (SN. Enight To HAVE EQS (4), L) (19) (N) WHERE NOINTEGER AND LE - H + Y = 44+ Y2. F 3 = 82-73, THEN THERE ARETWO ALTERNATIVES,

T. (5r) | Cos 72 | (5m n0 | OR, T = [Tr(Sr)] (cos 72) (sin n0)

T. (Sr) | Sr 72 | (cos n0) OR, T = [Kn(Sr)] (sin y2) (cos n0) TERMS OF . RATHER THAN ... FOR 500 OR SKO RESPECTIVELY. (ne INTEGER) . TO THE THAT IN THE THAT IS A MENTAL THAT IN THE THE THAT IN THE TH HEN. ES : AUTHOUGH THE TECHNIQUE OF INTRODUCING INDEPENDENT SUA_AR POTENTIALS WHICH SATISFY TELEGRAPH EQS. (OR HELMHOLTE'S EGS WITH COMPLEX PROPAGATION CONSTANTS) SO THAT ALL THE STRES-SES & DISPLACEMENTE ARE DETERMINED FROM THOSE POTENTIALS (Es. S APPARENTLY NOVEL IN VISCOBLASTICITY, THERE IS MUCH OTHER I THE VEST WE HELP HELP ACCUSES FOR EXAMPLE, HE CAN EQ. IN THIS HERE SHIPS AT IN LOW TANT PROVIDED THAT W O WITOLD NOWACKI, "DYNAMICS OF ELASTIC SYSTEMS" TOHN (\$\pi_) x \bar{r} SATIONIES TO DICEAGAN, INCOMEDIATE EQUAL THE THE LAME PROPA-WLEY & SONG, INC. 1963 (CHAP. 2)

A CEMAL ERINGEN, "MECHANICS OF CONTINUA" JOHN WILEY & 4POVE GATION CONSTANT. NOTE THAT THE LAST EQUICIONIN TO, 5 1 THAN HELMHOLTE CO. W. TH CA' = MB - Y/ASTAO. TH CEQ. S HARDER TO SOLVE THAN 10044 FOR F. C. TILL SEMARAPLE, SEPRRATION SONS, INC . 1967 . (CHAPTER 9). TZ EQS NOT MUCH APPLIED MATERIAL IS GIVEN IN THESE REFERENCES. 15 POST PLE FOR RE AT GENERAL AS, KE + K2 + + (M) + + 3 (0) + BEYOND THE FIELD EQUATIONS & CONSTITUTIVE RELATIONS, A THE TOTAL CONTRACT OR ARESTRARY USUALLY IN GENERAL TENSOR FORM. OTHER MORE GENERAL VISCOELASTIC MODELS (SUCH AS THE "STANDARD" VISCO -ELASTIC MODEL, WHICH IS A PARALLEL COMBINATION OF A MAXWELL AND A KELVIN-VOIGT MODELS AT EACH MATERIAL E) REMARKS a), b) & e) OF THE CYLINDRICAL CASES TO THE LEFT POINT OF THE BODY, AND WHICH IS VERY COMPLICATED TO HANDLE) ALSO HOLD HERE. REMARK A) S THE MOST IMPORTANT ONE I) ABOVE ARE DISCUSSED IN GENERAL IN THE ABOVE REFERENCES. THAT AL) THE MAKWELL MODEL IN LIPHERILAL COORDINATES WILL BE LEFT SOME OF THE BASIC EQS. OF STATIC ELASTICITY (IE, NO TIME-AS AN EXERCISE TO THE READER. JALLY, DEPENDENCE & NO VISCOSITY) IN SIX ORTHOGONAL COORDI-ARE THIS ENTIRE CHART, WHICH IS VALID FOR HARMONIC TIME - DEPEN-NATE SYSTEMS HAVE BEEN DERIVED BY STANLEY HALPERSON DENCE OF THE FORM ETHIS, SIA PARTICULAR LANG OF THE COMPANION TABLE 1" LAUD FOR ARBITRARY TIME-DEPENDENCE. JORDS. (M.S. THESIS, CATHOLIC UNIVERSITY, WASH. D.C., APRIL 1967.). THIS IS ONE OF THE NICEST COMPILATIONS OF THIS SORT WE (G. GAUNAURD , 1975). HAVE SEEN.

NSWC/WL1/TR-76-20

in a more or less complicated fashion depending on the model being used. For example, the relation is more complicated for the Maxwell than for the Kelvin model, in any coordinate system. These tables provide us with the methodology and information needed to solve boundary-value-problems of viscoelasto-dynamics for spherical or cylindrical geometries, in the Kelvin-Voigt or Maxwell models. The approach and material covered in these tables seems to be rovel as applied to viscoelasticity. The reader familiar with electro-magnetic theory will quickly notice the analogy of the presentation in this table to that of electrodynamic theory in the less familiar Coulomb ($\nabla \cdot \psi = 0$), rather than Lorentz (ie, $\nabla \cdot \psi + \frac{1}{c} \frac{\partial \phi}{\partial t} = 0$) gauge.

To verify that all the entries in the tables check with each other, we will illustrate the use of the formulas by analyzing one example. We arbitrarily select column D, which deals with the Kelvin-Voigt model in cylindrical coordinates for the subcase of plane-strain.

1. Definition o. 'lanc-Strain

In plane-str in, the strain tensor is two-dimensional and all strain components with a subradex z (axial coordinate) vanish. The stress-tensor is not, and there is a nonvanishing normal stress τ_z . Another equivalent way to define this situation is by stating that the axial displacement τ_z vanishes, and that the other two displacement components τ_z and τ_z are z-independent. Plane-strain is a particularly useful approximation for bodies which are very long in the z-direction.

2. Constitutive Relations

These are the relations between the stress and strain field components. There are three normal and one shear-stress components related to two normal and one shear-strain components. Stress and strain are independent concepts. Only when these two notions are linked through constitutive relations, is that a visco-elastic theory is formed. The first of these four relations is,

$$\tau_{rr} = (\lambda_e - i\omega\lambda_v) \Delta + 2(\mu_e - i\omega\mu_v) \epsilon_{rr}$$

where Δ is the trace of the strain tensor (ie, $\epsilon_{rr} + \epsilon_{\theta\theta}$) and it is called the dilatation. The other three relations are shown in Table 2.

3. Strain-Displacement Relations

Since the elastic or viscous constants do not appear in these relations, they are the same as in elasticity, namely,

$$\varepsilon_{rr} = \frac{\partial u_r}{\partial r}$$
, $\varepsilon_{\theta\theta} = \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_r}{r}$, $2\varepsilon_{r\theta} = \frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_{\theta}}{\partial r} - \frac{u_{\theta}}{r}$

all other strain-components vanishing by definition of plane-strain.

4. Displacement - Independent Potential Relation

These relations are intimately linked to the solenoidal solution of the vector Helmholtz equation in plane polar coordinates which is discussed below in item (11). The relations can be written as a single vector equation as follows,

$$\vec{u} = \vec{\nabla} \phi + (\vec{\nabla} \psi_z) \times \hat{\epsilon}_z$$

where ϕ and ψ are the two independent scalar potentials needed in this planestrain formulation. It is shown in item (11) that $\psi = \kappa_2 \chi$, where χ is a solution of the scalar Helmholtz's equation ($\nabla^2 + \kappa_2^{22}$) $\chi = 0$.

5. <u>Etress - Displacement Relations</u>

If the strain-displacement relations (3) are substituted into the constitutive relations (2), the result is the coress-displacement relations. The first such relation is,

$$\tau_{rr} = \left[\lambda_e - i\omega\lambda_v\right] \Delta + 2\left[\mu_e - i\omega\mu_v\right] \frac{\partial u_r}{\partial r}$$

where the dilatation Δ is now expressed in terms of the displacement components as follows,

$$\Delta = \frac{\partial u_r}{\partial r} + \frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r}.$$

6. Strain - Independent Potential Relations

If the displacement-independent potential relations (4) are substituted into the strain-displacement relations (3), the result is the strain-potential relation. The first of these three is,

$$\varepsilon_{rr} = \frac{\partial^2 \phi}{\partial r^2} + \frac{\partial}{\partial r} \left(\frac{1}{r} - \frac{\partial \psi}{\partial \theta} z \right)$$

and analogously for the other two. Here ϕ and ψ_2 are the <u>two</u> independent scalar potentials. Note that ψ_2 is the axial component of the <u>vector</u> potential ψ . Further, $\psi_2 = \kappa_2^2 \chi = - \nabla^2 \chi$ where χ is another independent scalar potential which can also be used here. (See item (11) below)

7. Field Equations

These are the Navier equations given initially in (i). For harmonic time-dependence they can be written as follows.

$$\nabla^2 \overset{+}{\mathbf{u}} + \left[1 + \frac{\lambda_e - i\omega \lambda_v}{\mu_e - i\omega \mu_v}\right] \overset{+}{\nabla} (\overset{+}{\nabla} \cdot \overset{+}{\mathbf{u}}) + \kappa_2^2 \overset{+}{\mathbf{u}} = 0$$

where $\kappa_2^2 = \rho \omega^2 \left[\mu_e - i \omega \mu_v \right]^{-1}$, and $\Delta = \text{dilatation} = \vec{\nabla} \cdot \vec{u}$. For planestrain in cylindricals, the quantities $\nabla^2 \vec{u}$ and $\vec{\nabla} \Delta$ take on the following simplified forms,

$$\nabla^{2} \stackrel{\downarrow}{u} = \left\{ \nabla^{2} u_{r} - \frac{u_{r}}{r^{2}} - \frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta} \right\} \stackrel{\hat{\epsilon}}{\epsilon}_{r} + \left\{ \nabla^{2} u_{\theta} - \frac{u_{\theta}}{r^{2}} + \frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta} \right\} \stackrel{\hat{\epsilon}}{\epsilon}_{\theta}$$

$$\operatorname{grad} \quad \Delta = \frac{\partial \Delta}{\partial r} \stackrel{\hat{\epsilon}}{\epsilon}_{r} + \frac{1}{r} \frac{\partial \Delta}{\partial \theta} \stackrel{\hat{\epsilon}}{\epsilon}_{\theta}$$

and also we have,

$$\dot{u} = u_r \hat{\epsilon}_r + u_\theta \hat{\epsilon}_\theta$$
and,
$$\nabla^2 u_r = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial \theta^2}\right) u_r (r, \theta).$$

8. Stress - Independent Potential Relations

If the strain-potential relations (6) are substituted into the constitutive relations (2), we obtain the stress-potential relations. One form of the first of these relations is,

$$\tau_{rr} = \begin{bmatrix} \lambda_{e} - i\omega\lambda_{v} \end{bmatrix} \Delta + 2 \begin{bmatrix} \mu_{e} - i\omega\mu_{v} \end{bmatrix} \left\{ \frac{\partial^{2}\phi}{\partial r^{2}} + \frac{\partial}{\partial r} \begin{bmatrix} \frac{1}{r} & \frac{\partial\psi_{z}}{\partial\theta} \end{bmatrix} \right\}$$

where,
$$\Delta = \nabla \cdot \vec{u} = \nabla \cdot [\nabla \phi + \nabla \times \vec{\psi}] = \nabla^2 \phi = -\kappa_1^2 \phi$$
.

The second form can be found by setting, $\psi_z = \kappa_2^2 \chi$. The formulas for the other three stresses present in this case can be found in Table 2.

9. Helmholtz's Equations For The Scalar And Vector Potentials

Substituting $u=\operatorname{grad} \phi+\operatorname{curl} \stackrel{\bullet}{\psi}$ into the Navier equations written in the alternative form,

$$(\lambda^{*} + 2\mu^{*}) \stackrel{?}{\nabla} (\stackrel{?}{\nabla} + \stackrel{?}{u}) - \mu^{*} \stackrel{?}{\nabla} \times (\stackrel{?}{\nabla} \times \stackrel{?}{u}) + \mu^{*} \kappa_{p}^{2} \stackrel{?}{u} = 0$$

Manager to the transfer of the property of the property of the state o

where $\lambda^* = \lambda_0 - i\omega\lambda_0$, $\mu^* = \mu_0 - i\omega\mu_0$, and $\mu^* \times_2^2 = p\omega^2$ we eventually find,

NSWC/WOL/TR-76-20

 $(\lambda^* + 2\mu^*) \stackrel{\tau}{\nabla} \left\{ \nabla^2 \phi + \kappa_1^2 \phi \right\} + \mu^* \stackrel{\tau}{\nabla} \times \left\{ \nabla^2 \stackrel{\tau}{\psi} - \stackrel{\tau}{\nabla} (\stackrel{\tau}{\nabla} \cdot \stackrel{\tau}{\psi}) + \kappa_2^2 \stackrel{\tau}{\psi} \right\} = 0 \quad \text{where}$ $\kappa_1^2 = \rho \omega^2 \left[\lambda_e + 2\mu_e - i\omega \left(\lambda_v + 2\mu_v \right) \right]^{-1} \quad \text{and} \quad \kappa_2^2 \quad \text{is as we defined it above in}$ it is obvious that the above expression is satisfied if,

$$\nabla^2 \phi + \kappa_1^2 \phi = 0 \qquad \text{and} \qquad \nabla^2 \psi + \kappa_2^2 \dot{\psi} = 0 \qquad \text{provided that}$$

$$\dot{\nabla} \cdot \dot{\psi} = 0 \quad \text{(ie, "Coulomb" gauge)}.$$

- 10. Helmholtz's Equations For The Independent Scalar Potentials

 Since in this case, $\dot{\psi} = \hat{\epsilon}_z \psi_z$ then, $\nabla^2 \dot{\psi} = \hat{\epsilon}_z \nabla^2 \psi_z$, and the result is, $(\nabla^2 + \kappa_1^2) \phi = 0$, $(\nabla^2 + \kappa_2^2) \psi_z = 0$
- 11. Solenoidal Solution of The Vector Helmholtz Equation

It is not hard to show that the solenoidal solution of $(\nabla^2 + \kappa_2^2)^{\frac{1}{\psi}} = 0$

is given by, $\bar{\psi}=\bar{\nabla}$ x $[\bar{\nabla}$ x $(\hat{\epsilon}_z\chi)]=\hat{\epsilon}_z\kappa_z^2\chi$ where χ (r,θ) is a scalar function satisfying the scalar Helmholtz's equation $(\bar{\nabla}^2+\kappa_z^2)\chi=0$. In component form, the above relation is $\psi_r=0$, $\psi_\theta=0$, and $\psi_z=\kappa_z^2\chi$. These are the relations between the three cylindrical components of the vector potential $\bar{\psi}$ and the scalar function χ (r,θ) . Note that, indeed, $\bar{\nabla}\cdot\bar{\psi}=0$. Note that in the absence of viscosity (ie, $\lambda=0$, $\mu=0$) the complex propagation constants κ_1 and κ_2 become real. Thus viscous damping is accounted for in these models by complex propagation constants, related to the material "constants" as shown above in items (7) and (9).

12. Remarks

- a) In cylindrical coordinates the plane-stress results are derivable from the plane-strain results by replacing the elastic constant λ_e in the plane-strain results, by the fictitious "constant" λ_e defined to be, $\lambda_e = 2\lambda_e \mu_e /(\lambda_e + 2\mu_e)$. In spherical coordinates there is no way to define the plane-stress subcase. In plane-stress, the stress tensor is two-dimensional, which means that all stress-components with a subindex z, vanish. The strain-tensor is not two-dimensional and there is an ϵ_z nonvanishing strain. This case is ideally suited for bodies which are very thin in one direction, the z-direction.
- b) Plane-strain (or plane-stress) with axial-symmetry about the z-direction can be obtained from the results in the eleven items above by merely setting $u_{\theta} = 0$ and $\frac{\partial}{\partial \theta}$ [any variable] = 0. There is only radial dependence in this situation.

NSWC/WOL/TR-76-20

- c) All the above applies to the Kelvin-Voigt model in cylindrical (actually, plane polar) coordinates, for the plane-strain subcase. This is Column D of Table 2. There are twelve cases covered in Tables 1 and 2 and this one was intended as an example to show how the various entries are derived from the others, how they check with each other, and how one could proceed to drive any other case. We have used the information in these tables to rigorously set up and solve acoustic scattering problems where the scattering bodies are elastic cylinders and spheres with their outer surface coated with layers of viscoelastically absorbing materials. One reason to have written this report is to gather these fundamental viscoelasticity relations, which are not available elsewhere to this degree of detail and approach, in one document that we could refer to in future work as the place where the theoretical background is derived and presented, in the form in which we will use it.
- d) Some authors have stated that in order to solve problems involving absorptive bodies one must deal with Helmholtz's equation with a complex propagation constant K. This is indeed correct but there is much more to it than just that. Just with a complex K we would not know how the real and imaginary parts of K are related to the elastic and viscous material constants of the solid in the various viscoelastic models that one could use. In fact, we would not know this relationship in any model. Furthermore, we would not know how to relate the stresses and displacements in the body to the solution of that Helmholtz equation with a complex K. Hence, although the idea is correct, in practice one really needs to derive all the detailed information contained in these tables, and that is why we developed them. Careful examination of these tables shows that the problem is really harder than anticipated, since we must solve not one but several (ie, three) Helmholtz's equations with various (ie, two) complex propagation constants which are different, and then go through various other sets of equations (ie, 4 and 8) to obtain the displacements and stresses from the solutions of those Helmholtz's equations. We finally point out that this procedure yields different results in each one of the various models and cases presented there.
- e) Column A, Table 1 shows some general formulas valid for all coordinate systems. Note, however, that since the solution of the vector telegraph equation varies with the coordinate system, not many general entries can be filled in that column.

G. C. Gaunaurd, "Sound Scattering from an Elastic Cylinder Covered With a Viscoelastic Coating", JASA 58, S101, 1975. Also, Proc. of III, U.S.-Fed. Republic of Germany, Hydroacoustics Symposium, Munich, Germany, Vol 1, Fart II, pp 4-31, May 1975 (U)

or also,
$$\phi(x,t) = A e^{+\kappa x + i\omega t}$$
 where, $\kappa^2 = -\frac{\omega^2}{C_p^2 (1 + i\omega P)}$ (3)

Here C is real and the $\stackrel{+}{-}$ signs in front of KX describe waves travelling to the right or left of some origin. (If one were interested in time-dependence $\exp(-i\omega t)$ we would replace i by -i in all these results.)

Now let us consider the standard one-dimensional wave equation,

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} \tag{4}$$

The solution of eq. (4) for harmonic time-dependence exp(iwt) can analogously be written as,

$$\phi(x,t) = A e^{i\left[\frac{t}{c} \kappa x + \omega t\right]} \text{ where } \kappa^2 = \frac{\omega^2}{c^2}$$
 (5)

or also,
$$\phi(x,t) = A e^{+\kappa x + i\omega t}$$
 where $\kappa^2 = \frac{\omega^2}{c^2}$.

It is obvious that solutions (2) and (5) and also (3) and (6) can be made equal by setting $C = C_p$ (1 + i ω P). It is clear that we can solve the telegraph equation with a real propagation speed C_p by ignoring the damping term, ie, by solving the wave-equation with a suitably chosen complex propagation speed. Complex speeds are artificially produced by fictitious complex elastic constants that one can introduce for this purpose.

Let us now look at the case of shear waves in a solid. Define a complex shear modulus μ^{μ} = μ^{ν} + $i\mu^{\nu}$ = μ^{ν} (1 + $i\delta$), where δ = $\mu^{\nu\nu}/\mu^{\nu}$.

The equations of linear viscoelasticity are the same of those of elasticity (ie. no viscosity) if λ_{μ} and μ_{μ} in the elasticity equations are replaced by the

quantities,
$$\lambda^* = \lambda_e + i\omega \lambda_v$$
 $\mu^* = \mu_e + i\omega \mu_v$ (7)

NOTE: This is true only in the Kelvin-Voigt viscoelastic model with assumed time-dependence of the form exp(iwt).

Clearly $\mu_{\mu} = \mu'$ and $\mu_{\nu} = \mu''/\omega$. Thus, for shear waves,

$$P = 3 = \frac{\mu_{v}}{\mu_{e}} = \frac{\mu''}{\omega \mu'} = \frac{\delta}{\omega} \quad \text{and} \quad C + C_{s}\sqrt{1 + i\omega 3'} = \sqrt{\frac{\mu' + i\mu''}{\rho}} = \sqrt{\frac{\mu''}{\rho}}$$
 (8)

NSWC/WOL/TR-76-20

Hence, for harmonic shear waves in the Kelvin model, by solving the wave-equation, with a complex shear modulus, we have the solution of the telegraph equation. This can also be done in the Kelvin model for longitudinal (or dilatational) waves.

It turns out that the Kelvin model with harmonic time-dependence assumed, is the only case where the viscosity coefficients λ , μ of the viscoelastic solid are linearly proportional to the imaginary parts λ'' , μ'' of the "complex elastic constants" λ^* , μ^* , the proportionality factors being $1/\omega$. It is also the only case where the elastic constants λ , μ of the solid are just the real parts λ' , μ' of the "complex elastic constants."

To show this, let us now consider the Maxwell model, where the springs and dashpots at each material point are now connected in series. It can be quickly shown that the field equations and constitutive relations of the Maxwell solid are the same as those of elasticity, provided that the elastic constants λ_e , μ_e of the elasticity equations are replaced by the operators,

$$\lambda_{e} + \frac{\frac{\partial}{\partial t}}{2\beta + \frac{\partial}{\partial t}} \left\{ \frac{\lambda_{e} (2\beta + \frac{\partial}{\partial t}) - 2\alpha\mu_{e}}{3\alpha + 2\beta + \frac{\partial}{\partial t}} \right\}, \qquad \mu_{e} + \frac{\mu_{e} + \frac{\partial}{\partial t}}{2\beta + \frac{\partial}{\partial t}}$$
(9)

where α , β are the viscosity coefficients of the Maxwell model (which are analogous to λ , μ of the Kelvin model). For time-dependence of the form exp(-iwt) we can call these operators by the name "complex elastic constants" λ^* , μ^* ie,

$$\lambda^* = \frac{i\omega}{i\omega - 2\beta} \quad \left\{ \frac{\lambda_e(2\beta - i\omega) - 2\alpha\mu_e}{3\alpha + 2\beta - i\omega} \right\}, \quad \mu^* = \frac{\mu_e i\omega}{i\omega - 2\beta}$$
 (10)

It is obvious that if there is no viscosity (ie, $\alpha=0.\beta=0$) these quantities λ^* , μ^* would reduce to λ , μ respectively. It is also clear that α and β are now not proportional to the imaginary parts of λ^* and μ^* respectively. Furthermore, λ and μ are not the real parts of λ^* and μ^* anymore. Thus the "trick" of the complex elastic constants does not work here at all. The "trick" also fails for the standard viscoelastic model, or any more complicated model which contains at least one Maxwell element. In fact it fails even when there is no Maxwell element in the model provided there is more than one Kelvin element. Thus, only for one single Kelvin element will it "work."

For the reasons given above we believe that the most clear, systematic and natural way to handle viscoelastic problems of this sort is to measure the (real) elastic constants of the material independently from the (real) viscous coefficients and then use those numerical values in the field-equations when analytically solving them. Of course, we must keep the damping terms in the field equations. The final result will be complex, but this fact is due to the presence of the damping terms rather than because of any "complex moduli" we want to fictitiously introduce because of our insistance on ignoring the damping terms instead. We have seen that the complex moduli "trick" becomes exceedingly difficult, in fact impossible, in any case other than the Kelvin-Voigt model with harmonic time-dependence.

1. The Correspondence Theorem

The state of the s

A very useful theorem that permits us to relate solutions of elastic problems to those of viscoelasticity (in any model) is the Correspondence Theorem. This theorem has a conceptually very simple statement, but it is very difficult to apply it to actual cases. The theorem basically says that if we want the solution to a viscoelasticity problem (static or dynamic, and in any model) we should first solve the "corresponding" elastic problem without viscosity. Then we Laplace-transform the solution. Then we replace the elastic constants appearing in that Laplace-transformed solution, by certain "memory functions" (which vary with the viscoelastic model being used). The result of this replacement is the Laplace transform of the solution of the "corresponding" viscoelastic problem. Inverting it, we have the solution of the viscoelastic problem we wanted to solve. We here recall the Laplace Transform pair,

$$F(s) = \int_0^\infty f(t) e^{-st} dt , \qquad f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} F(s) e^{st} ds .$$

The prescription given by the Correspondence Theorem is very straight forward. It turns out in practice that when the elastic constants are replaced by those "memory functions", the resulting Laplace-transformed solution that must now be inverted is quite formidable in most cases of interest (ie, dynamic cases). We should point out that the memory functions depend on the Laplace transform variable s in a more or less complicated manner depending on whatever viscoelastic model one uses. See equations (7) or (10) with iw replaced by s, for the Kelvin or the Maxwell model respectively.

I don't really want to discuss the Correspondence Theorem or its applications. My point is that those "memory functions" mentioned in it, are precisely the equivalent or the analogue of those "complex-elastic constants" that some authors try to introduce fictitiously in real-space rather than in the Laplace-space, before inversion to the real time-domain. Hence, the way to use those "complex elastic constants" in a way that Works," is really in the light of the correspondence theorem. Unfortunately, that is quite a difficult task.

We have already pointed out that another method which "works" is to measure the (real) elastic and viscous constants of the material, each set independently of the other, and then solve the field-equations with the damping terms included, with those numerical values measured for the constants. This method is also general and works for any viscoelastic model and it is, incidentally, the way viscous flow problems are attacked in Fluid Mechanics.

and the grant of the first of the state of the

⁷ See A. Cemal Eringen, "Continuum Mechanics," John Wiley and Sons, Inc., 1967, Article 9.12, p. 368.

NSWC/WOL/TR-76-20

Observation of Table 1 and 2 shows why the telegraph-type equations we have discussed here are so important in viscoelasto-dynamical problems. Note that the telegraph-type equations for the potentials ϕ , ψ , χ are of the type given here in eq. (1), for the Kelvin-Voigt model only. Note, for exmaple, that for the Maxwell model they are substantially different. (Table 1, eqs. C-10). The equation for ϕ is,

$$\left[2\beta + 4\alpha \frac{c^2}{c^2} + \frac{\partial}{\partial t}\right] \nabla^2 \phi = \frac{1}{c^2} \left\{ \left[3\alpha + 4\beta + \frac{\partial}{\partial t}\right] \frac{\partial^2 \phi}{\partial t^2} + 2\beta \left(3\alpha + 2\beta\right) \frac{\partial \phi}{\partial t} \right\}$$
(11)

which is of the same "type" but not quite of the form given here in eq. (1).

We can conceptually always introduce complex moduli (as in eqs. (7) or (10) or their analogues for the "standard" model) provided we work in Laplace space as prescribed by the Correspondence Theorem. If we introduce them in the real time-domain and then try to physically identify the real (or imaginary) parts of these complex constants with the real elastic constants (or the viscous coefficients), then the process only "works" in the Kelvin-Voigt model. In this sense, "works" means that the equivalence of both approaches can be established.

One way to experimentally measure the absorption losses of material samples is the impedance tube or pulse tube. It is customary for the literature on this technique to report measurements of quantities such as E' and E" or μ ' and μ " etc... This technique is a good source for the popularity of "complex moduli". We should note that the lossy samples tested in this fashion are always characterized by the Kelvin-Voigt viscoelastic model with harmonic time-dependence, an assumption that may not always be justified.

2. Conclusions

We summarize our points as follows.

- (a) The continuum (infinite number of degrees-of-freedom) approach to visco-elasticity as a field-theory is the only way to go today. Discrete approaches leave much to be desired and are simplistically unrealistic.
- (b) It looks like for some time to come, we will be dealing with the Kelvin-Voigt and Maxwell models, since any other model presents too many analytical difficulties.
- (c) A systematic way to set up viscoelastic boundary-value-problems and solve the field equations in these two models, is presented here for cylinder and sphere problems. This approach is shown in Tables 1 and 2 which are self-explanatory.
- (d) The most general method available to solve static or dynamic problems of viscoelasticity in any model is by means of the Correspondence Theorem. Here we must work in Laplace-space and the inversions are hard. This approach is totally equivalent (at least for the Kelvin and Maxwell models) to our approach described above in (3) and in Tables 1 and 2.

NSWC/WOL/TR-76-20

- (e) Another technique, which holds for any model, is also given here. It consists of solving those resulting "telegraph-type" equations for the scalar potentials keeping in them the damping terms, but using real values for the elastic and viscous constants which are to be experimentally measured as it is done in Fluid Mechanics.
- (f) We claim this technique is more systematic and less confusing than to ignore the damping terms introducing instead "complex elastic moduli". The complex moduli "trick" only works for the Kelvin model with harmonic time-dependence anyway.
- (g) It seems clearer to us when talking about elastic constants, say, Young's modulus E, to think of the slope of the stress-strain curve as found in a tension test, than of that "complex Young's modulus" which contains the "loss" in its imaginary part, all because some want to solve wave equations rather than telegraph equations, particularly in the only situation when one is no harder to solve than the other.
- (h) The determination of the solid's elastic constants should be kept separate and independent from the determination of the viscosity coefficients. I know this can be done in some instances, but I am not aware of how plausible this recommendation can be in all instances.
- (i) Finally it is worth stating that the pulse tube measurements implicitly describe the viscoelastic "losses" in the sample by the Kelvin-Voigt model, an observation that escaped me (and perhaps others) until recently.
- (j) Equation (10) can be used to express the complex shear and dilational moduli for the Maxwell model in terms of the viscosity coefficients and the elastic constants of the model as follows.

$$\mu^* = \frac{\mu_e}{1 + \left(\frac{2\beta}{\omega}\right)^2} \left[1 - i\left(\frac{2\beta}{\omega}\right)\right] \quad \text{and}$$

$$\lambda^* + 2\mu^* = \frac{1}{1 + \left(\frac{2\beta}{\omega}\right)^2} \cdot \frac{1}{1 + \left(\frac{3\alpha + 2\beta}{\omega}\right)^2} \left\{ \left[\left[\lambda_e + 2\mu_e\right] \left[1 + \left(\frac{2\beta}{\omega}\right)^2\right] + \frac{4\alpha\mu_e}{\omega} \left(1 + \frac{2\beta}{\omega}\right)\right] - i\left(\frac{3\alpha + 2\beta}{\omega}\right) \left[\lambda_e \left\{1 + \left(\frac{2\beta}{\omega}\right)^2\right\} + 2\mu_e \left\{\frac{4\beta}{\omega} \cdot \frac{\alpha + \beta}{\omega} - \frac{\alpha + 2\beta}{\omega}\right\} \right] \right\}.$$

These relations may be useful when trying to interpret "losses" in the light of the Maxwell model if one day one wishes, or the need arises to do so. It is obvious that these relations are considerably more complicated than the analogous ones for the Kelvin model, which are,

$$\mu^{\bullet} = \mu_{\alpha} \left[1 + i\omega N \right]$$
, $\lambda^{\bullet} + 2\mu^{\bullet} = (\lambda_{\alpha} + 2\mu_{\alpha}) \left[1 + i\omega N \right]$ where,

$$N = \frac{\mu_{v}}{\mu_{e}} \quad \text{and} \quad M = \frac{\lambda_{v} + 2\mu_{v}}{\lambda_{e} + 2\mu_{e}}$$

(See Table 2, column A, item (9).)

BIBLIOGRAPHY

- 1. A. Cemal Eringen, Mechanics of Continua, John Wiley & Sons, 1967
- 2. A. Cemal Eringen, Non-Linear Theory of Continuous Media, McGraw-Hill Book Co., New York, 1962
- 3. Witold Nowacki, Dynamic of Elastic Systems, John Wiley & Sons Inc, 1963
- 4. J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley & Sons Inc, New York, 1961
- 5. S. C. Hunter, "The Solution of Boundary Value Problems in Linear Viscoelasticity" in Mechanics and Chemistry of Solid Propellants, pp 257-295, Proc of IV Symp on Naval Structural Mech, Perhamon Press, N Y, 1967
- 6. C. Truesdell and R. Toupin, "The Classical Field Theories" Handbuch der Physik, Vol III/1, Springer-Verlag, Berlin, 1960
- 7. C. Truesdell and W. will, "The Non-Linear Field Theories of Mechanics", Handbuch der Physik, Bd III/3, Springer-Verlag, Berlin, 1965
- 8. M. Junger and D. Feit, Scund, Structures and Their Interaction, MIT Press, Boston, 1971
- 9. D. R. Bland, The Theory of Linear Viscoelasticity, Pergamon Press, N Y 1960
- 10. L. Cremer, M. Heckl, E. E. Ungar, Structure-Borne Sound, Springer-Verlag, N Y. 1973
- 11. C. H. Wilcox, "Debye Fotentials", J. Math Mech 6, 167-201, 195"
 12. H. Hönl, A. W. Maue, K. Westpfahl, "Theorie der Beugung", in Handbuch der Physik, Bd 25, Springer-Verlag, Berlin, 1961
- 13. W. P. Mason, Physical Acoustics and the Properties of Solids, D. Van Nostrand Co. Inc. N Y 1958
- 14. H. Überall, "Surface Waves in Acoustics", in Physical Acoustics Vol X, Edited by W. P. Mason, Academic Press, N Y, 1973, pp 1-60. This article contains over one hundred up-to-date references on the subject of acoustic scattering by elastic objects.

NSWC/WOL/TR-76-20

DISTRIBUTION

Dir. of Defense Research & Engr. Pentagon, Washington, D. C. 20350 Attn: M. R. Currie J. L. Allen (Res. & Tech.)	1
Asst. Secretary of The Navy Research and Development Pentagon 4E736, Wash. D. C., 20350 Attn: H. T. Marcy	1
Chief of Naval Operations, Office of	
a) Operations Evaluations Group 1401 Wilson Blvd. Arlington, Va. 22209 Attn: OP-03EG, P. E. DePoy	1
b) Pentagon, Washington, D. C. 20350 NOP-32, R. F. Hoffmann NOP-098T, R. O. Burns NOP-095, D. J. Murphy	1 1
Chief of Naval Material U. S. Navy Department Washington, D. C. 20360 Attn: NMAT-03L, J. H. Probus	1
Office of Naval Research 800 N. Quincy Street Arlington, Va. 20360 Attn: ONR-102, W. P. Raney ONR-201, L. E. Larmore ONR-222, G. L. Boyer ONR-401, E. Weinlerg ONR-420, T. Berlincourt CNR-432, S. L. Brodsky ONR-470, E. Salkovitz	1 1 1 1 1 1 1 1 1

The second of th

NSWC/WOL/TR-76-20

	Research Laboratory	
Washin	gton, D. C. 20375	
Attn:	NRL-4000, A. Berman	1
	WKT-0000, c. volga	1
	NRL-8104, S. Hanish	1
	NRL-8130, L. Dragonette	1
Naval	Research Laboratory	1
Underw	ater Sound Reference Div.	
P. Q.	Box 8337 (Chief Scientist)	
Orland	o, Fla. 32806	
	Sea Systems Command	
	gton, D. C. 20360	
Attn:	SEA-03C, J. H. Huth	1
	SEA-03B, S. R. Marcus	1
	SEA-036, C. D. Smith	1
	SEA-037, L. H. Beck	1
	SEA-0371, E. McKinney	1
	SEA-0342, E. Listka	1
	SEA-0351, T. E. Peirce	1
David	Taylor Naval Ship R & D Center	
	derock, Md. 20084	
Attn:	A. Povell	2
	M. Sevic	1 1 1 1
	W. W. Murray	1
	G. Maidanik	1
	D. Feit	
	apolis, Md. 21402	
Attn:	L. Ho	1
	J. J. Bynck	1
	Undersea R & D Center	
	ego, Calif. 92132	
Attn:	W. B. McLean, TD	7
	NUC-601, D. M. Chabries	
	NUC-6005, J. W. Young	1

NSWC/WOL/TR-76-20

Naval Ship Engineering Center 3700 East-West Highway Hyattsville, Md. 20782 Attn: NSEC-6101E01, D. Pratt NSEC-61200, I. Williams	1
Naval Underwater System Center	
a) New London Lab. New London, Conn. 06321 Attn: T. Kooij J. P. Holland	1
b) Newport Lab, Newport, R. I. 02840 Attn: N. C. Pryor F. Cancilliere	1
Defense Documentation Center Cameron Station Alexandria, Va. 22314	12
Naval Trielligence Support Center 4301 Suitland Rd., Wash. D. C. 20390 Attn: NISC-00A, W. M. Hubbard NISC-00C, B. Valenti	1
Commander-in-Chief U. S. Atlantic Fleet Norfolk, Va. 23511 Attn: Science Advisor	1
Defense Adv. Res. Projects Agency 1300 Wilson Blvd., Arlington, Va. 22209 Attn: R. F. Read, Asst. Dir. R & E	1
National Academy of Sciences National Research Council 2101 Constitution Ave., N. W. Washington, D. C. 20418	1

NSWC/WOL/TR-76-20

National Science Foundation 1800 G St. N. W. Washington, D. C. 20550 Attn: Jerome Fregeau, Asst. Dir. W. H. Pell, Math. Sciences	1
Energy Research and Development Administration Mail Station J-309, Rm G-365 Germantown, Maryland 20767 Attn: Milton Roxe	1
Defense Nuclear Agency Washington, D. C. 20301 Attn: P. H. Haas, Code 244 Library	1
Air Force Office of Scientific Res. 1400 Wilson Blvd, Arlington, Va. 22209 Directorates of Physics & Math Attn: W. J. Best 535 M. M. Andrew 433	1
Naval Air Systems Command 1411 Jefferson Davis Highway Arlington, Va. 20360 Attn: NAIR-03C, E. S. Lamar NAIR-5203, R. Schmidt NAIR-5330, C. M. Rigsbee	1 1 1
Air Force Systems Command Aerospace Medical Research Lab Wright Patterson AFB, Ohio 45433 Attn: H. E. vonGierke H. Cestreicher	1
Naval Air Development Center Warminster, Pa. 18974 Attn: R. K. Lobb	1
Deputy Chief of Staff of RDA Chief Scientist DA & Dir. Army Research Pentagon 3Fh25 Washington D. C. 20310	1

NSWC/WOL/TR-76-20

Naval Post-Graduate School Monterey, Calif. 93940 Attn: H. Medwin Library	1
U. S. Naval Academy Annapolis, Maryland 21402 Attn: D. Brill Librarian	1
Applied Research Laboratory Penn. State University University Park, Pa. 16801 Attn: E. Skudrzyk	1
Catholic Univ. of America P. O. Box 232, Cardinal Station Washington, D. C. 20017 Attn: T. J. Eisler M. Strassberg H. Uberall F. A. Andrews	1 1 1 1
University of Michigan Radiation Laboratory Ann Arbor, Mich. 48105 Attn: T. B. Senior	1
University of Rochester Physics Department Rocherter, N. Y. 14627 Attn: E. Wolf	1
Polytechnic Institute of N. Y. EE & Electrophysics Dept. Farmingdale, Long Island, N. Y. 11735 Attn: L. B. Felsen	1

NSWC/WOL/TR-76-20

University of Denver Mathematics Dept. Denver, Colorado 80210 Attn: N. Bleistein	1
J. G. Engr. Research Associates 3831 Menlo Drive Baltimore, Maryland 21215 Attn: J. Greenspon	1
Cambridge Acoustical Associates Cambridge, Mass. 02138 Attn: M. C. Junger	1
General Dynamics Electric Boat Division Eastern Point Road Grotton, Conn. 06340	
Attn: G. Sefcik M. Pierucci	1
Tracor Inc. 1601 Research Blvd. Rockville, Maryland 20850 Attn: R. J. Urick	1
Weidlinger Associates M. L. Baron, Consulting Engr. 110 E. 59th St. New York, N. Y. 10022	1
Tracor Jitco Inc. 12410 Washington Ave. Rockville, Maryland 20852 Attn: H. Gorges, V. Pres.	

TO AID IN UPDATING THE DISTRIBUTION LIST FOR NAVAL SURFACE WEAPONS CENTER, WHITE OAK LABORATORY TECHNICAL REPORTS PLEASE COMPLETE THE FORM BELOW:

TO ALL HOLDERS OF NSWC/WOL/TR 76-20
by G. C. Gaunaurd, Code WR-31
DC NOT RETURN THIS FORM IF ALL INFORMATION IS CURRENT

ACILITY NA	ME AND ADDRESS (OLD)	(Snow Zip Code)			
`			•		
•					
		•			
NEW ADDRESS	S (Show Zip Code)				
ATTENTION L	INE ADDRESSES:	······································			
		·	-		
	<i>:</i>				
	 				
	•				
] remove th	HS FACILITY FROM THE	DISTRIBUTION	LIST FOR TECHN	CAL REPORTS ON T	HIS SUBJECT.
					•